toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Anonymous url  isbn
openurl 
  Title Type Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 118 pp  
  Keywords abandoned mines; acid mine drainage; aquifer vulnerability; aquifers; arsenic; bibliography; bioremediation; chemical properties; chemical waste; chromium; constructed wetlands; decontamination; disposal barriers; ground water; grouting; industrial waste; metals; microorganisms; mines; mobility; phytoremediation; pollutants; pollution; programs; reclamation; remediation; sludge; soil treatment; soils; solvents; sorption; Superfund; surface water; tailings; toxic materials; waste disposal; waste disposal sites; water quality; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Society for Mining, Metallurgy, and Exploration Place of Publication Littleton Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Remediation of historical mine sites; technical summaries and bibliography Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0873351622 Medium  
  Area Expedition Conference (up)  
  Notes Remediation of historical mine sites; technical summaries and bibliography; 1998-031431; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6164 Serial 11  
Permanent link to this record
 

 
Author Rees, B. url  openurl
  Title An overview of passive mine water treatment in Europe Type Journal Article
  Year 2005 Publication Mine Water Env. Abbreviated Journal  
  Volume 24 Issue 1 Pages 26-28  
  Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference (up)  
  Notes An overview of passive mine water treatment in Europe; 2007-023994; 1 table Federal Republic of Germany (DEU); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5411 Serial 19  
Permanent link to this record
 

 
Author Coulton, R.H.; Williams, K.P. url  openurl
  Title Active treatment of mine water; a European perspective Type Journal Article
  Year 2005 Publication Mine Water Env. Abbreviated Journal  
  Volume 24 Issue 1 Pages 23-26  
  Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Active treatment of mine water; a European perspective; 2007-023995; illus. incl. 3 tables Federal Republic of Germany (DEU); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5412 Serial 20  
Permanent link to this record
 

 
Author Schoeman, J.J.; Steyn, A. url  openurl
  Title Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa Type Journal Article
  Year 2001 Publication Desalination Abbreviated Journal  
  Volume 133 Issue 1 Pages 13-30  
  Keywords underground mine water treatment technologies reverse osmosis electrodialysis reversal ion-exchange water quality brine disposal treatment costs  
  Abstract Grootvlei Proprietary Mines Ltd is discharging between 80 and 100 Ml/d underground water into the Blesbokspruit. This water is pumped out of the mine to keep the underground water at such a level as to make mining possible. The water is of poor quality because it contains high TDS levels (2700-3800 mg/l) including high concentrations of iron, manganese, sulphate, calcium, magnesium, sodium and chloride. This water will adversely affect the water ecology in the Blesbokspruit, and it will significantly increase the TDS concentration of one of the major water resources if not treated prior to disposal into the stream. Therefore, alternative water desalination technologies were evaluated to estimate performance and the economics of the processes for treatment of the mine water. It was predicted that water of potable quality should be produced from the mine water with spiral reverse osmosis (SRO). It was demonstrated that it should be possible to reduce the TDS of the mine water (2000-2700-3400-4500 mg/l) to potable standards with SRO (85% water recovery). The capital costs (pretreatment and desalination) for a 80 Ml/d plant (worst-case water) were estimated at US$35M. Total operating costs were estimated at 88.1c/kl. Brine disposal costs were estimated at US$18M. Therefore, the total capital costs are estimated at US$53M. It was predicted that it should be possible to produce potable water from the worst-case feed water (80 Ml/d) with the EDR process. It was demonstrated that the TDS in the feed could be reduced from 4178 to 246 mg/l in the EDR product (65% water recovery). The capital costs (pretreatment plus desalination) to desalinate the worst-case feed water to potable quality with EDR is estimated at US$53.3M. The operational costs are estimated at 47.6 c/kl. Brine disposal costs were estimated at US$42M. Therefore, the total capital costs are estimated at US$95.3 M. It was predicted that it should be possible to produce potable water from the mine water with the GYP-CIX ion- exchange process. It was demonstrated that the feed TDS (2000- 4500 mg/l) could be reduced to less than 240 mg/l (54% water recovery for the worst-case water). The capital cost for an 80 Ml/d ion-exchange plant (worst-case water) was estimated at US$26.7M (no pretreatment). Operational costs were estimated at 60.4 c/kl. Brine disposal costs were estimated at US$55.1M. Therefore, the total desalination costs were estimated at US$81.8M. The capital outlay for a SRO plant will be significantly less than that for either an EDR or a GYP-CIX plant. The operating costs, however, of the RO plant are significantly higher than for the other two processes. Potable water sales, however, will bring more in for the RO process than for the other two processes because a higher water recovery can be obtained with RO. The operating costs minus the savings in water sales were estimated at 17.2; 6.7 and US$8.6M/y for the RO, EDR and GYP-CIX processes, respectively (worst case). Therefore, the operational costs of the EDR and GYP-CIX processes are the lowest if the sale of water is taken into consideration. This may favour the EDR and GYP-CIX processes for the desalination of the mine water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Feb. 10; Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa; Isi:000167087500002; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10184.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17480 Serial 23  
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J. url  openurl
  Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
  Year 2006 Publication Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 12 Pages 2188-2200  
  Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry  
  Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17248 Serial 44  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: