toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, M.; Li, L.; Grace, J.; Tazaki, K.; Shiraki, K.; Asada, R.; Watanabe, H. url  openurl
  Title Remediation of acid rock drainage by regenerable natural clinoptilolite Type Journal Article
  Year 2007 Publication Water, Air, Soil Pollut. Abbreviated Journal  
  Volume 180 Issue 1-4 Pages 11-27  
  Keywords mine water treatment  
  Abstract Clinoptilolite is investigated as a possible regenerable sorbent for acid rock drainage based on its adsorption capacity for Zn, adsorption kinetics, effect of pH, and regeneration performance. Adsorption of Zn ions depends on the initial concentration and pH. Adsorption/Desorption of Zn reached 75% of capacity after 1-2 h. Desorption depended on pH, with an optimum range of 2.5 to 4.0. The rank of desorption effectiveness was EDTAEDTA > NaCl > NaNO3 > NaOAc > NaHCO3 > Na2CO3 > NaOH > CeCa(OH)(2). For cyclic absorption/desorption, adsorption remained satisfactory for six to nine regenerations with EDTA and NaCl, respectively. The crystallinity and morphology of clinoptilolite remained intact following 10 regeneration cycles. Clinoptilolite appears to be promising for ARD leachate treatment, with significant potential advantages relative to current treatment systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-6979 ISBN Medium  
  Area Expedition Conference  
  Notes Mar; Remediation of acid rock drainage by regenerable natural clinoptilolite; Wos:000244030000003; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 7319 Serial 17  
Permanent link to this record
 

 
Author Wolkersdorfer, C. url  openurl
  Title Tracer tests as a mean of remediation procedures in mines Type Journal Article
  Year 2006 Publication Uranium in the Environment: Mining Impact and Consequences Abbreviated Journal  
  Volume Issue Pages 817-822  
  Keywords mine water treatment  
  Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Consequently, the knowledge about the hydraulic behaviour of the mine water within a flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, although only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Tracer tests as a mean of remediation procedures in mines; Isip:000233396400084; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 7590 Serial 153  
Permanent link to this record
 

 
Author Wiseman, I.M.; Rutt, G.P.; Edwards, P.J. url  openurl
  Title Constructed wetlands for minewater treatment: Environmental benefits and ecological recovery Type Journal Article
  Year 2004 Publication Water and Environment Journal Abbreviated Journal  
  Volume 18 Issue 3 Pages 133-138  
  Keywords mine water treatment  
  Abstract The ecology of the River Pelenna (in South Wales) was impoverished by polluted discharges from abandoned coal mines. A series of passive constructed wetlands was created in order to treat these discharges and to improve the ecology of the river. A three-year Environment Agency R&D project investigated the performance, environmental benefits and sustainability of the constructed wetlands. It showed that the treatment systems were removing most of the iron contamination. In the reaches downstream from the minewaters, the dissolved-iron concentration quickly dropped below the target level. Invertebrate abundance, trout and riverine bird populations increased in following years. However, occasional overflows from the systems have significantly affected the ecology of one stretch of river The research work has provided an insight into the potential for ecological recovery associated with future minewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1747-6585 ISBN Medium  
  Area Expedition Conference  
  Notes Aug.; Constructed wetlands for minewater treatment: Environmental benefits and ecological recovery; Wos:000230520000002; Times Cited: 0; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7891.pdf; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 7891 Serial 68  
Permanent link to this record
 

 
Author Blowes, D.W.; Bain, J.G.; Smyth, D.J.; Ptacek, C.J.; Jambor, J.L.; Blowes, D.W.; Ritchie, A.I.M. url  openurl
  Title Treatment of mine drainage using permeable reactive materials Type Journal Article
  Year 2003 Publication Environmental Aspects of Mine Wastes Abbreviated Journal  
  Volume 31 Issue Pages 361-376  
  Keywords acid mine drainage; acidification; aquatic environment; aquifer vulnerability; aquifers; bacteria; biodegradation; Canada; case studies; chemical reactions; Cochrane District Ontario; concentration; damage; degradation; disposal barriers; Eastern Canada; effluents; environmental analysis; ferric iron; Fry Canyon; ground water; iron; Kidd Creek Site; metal ores; metals; mines; models; Monticello Canyon; Ontario; pollution; preferential flow; reactive barriers; remediation; sediments; solid waste; sulfate ion; sulfates; sulfides; tailings; Timmins Ontario; United States; uranium ores; Utah; waste disposal; waste management; waste rock mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of mine drainage using permeable reactive materials; Ccc:000186842900017; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 7910 Serial 182  
Permanent link to this record
 

 
Author Catalan, L.J.J.; Yin, G. url  openurl
  Title Comparison of calcite to quicklime for amending partially oxidized sulfidic mine tailings before flooding Type Journal Article
  Year 2003 Publication Environ Sci Technol Abbreviated Journal  
  Volume 37 Issue 7 Pages 1408-1413  
  Keywords mine water treatment  
  Abstract Flooding partially oxidized mine tailings for the purpose of mitigating further oxidation of sulfide minerals and generation of acid drainage is generally preceded by treatment with alkaline amendments to prevent releasing previously accumulated acidity to the water cover. This work compares the ability of calcite (CaCO3) and quicklime (CaO), two common amendments, to establish and maintain pH conditions and dissolved metal concentrations within environmentally acceptable ranges over long time periods. Although higher initial pH values were obtained with quicklime, the pH of quicklime treated tailings decreased over time. This was attributed to the low buffering capacity of quicklime treated tailings and to the consumption of hydroxide ions by incongruent dissolution of water-insoluble iron oxyhydroxysulfate minerals. In contrast, the pH of tailings treated with calcite increased initially and then remained stable at pH approximate to 6.7. This pH behavior was due to the lower reactivity of iron oxyhydroxysulfates with calcite, the increased buffering capacity provided by bicarbonate ions, and the incomplete dissolution of calcite. Overall, calcite was found preferable to quicklime for maintaining long-term neutral pH conditions in the treated tailings. With the exception of zinc, acceptable dissolved metal concentrations were achieved with calcite treated tailings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes Apr. 01; Comparison of calcite to quicklime for amending partially oxidized sulfidic mine tailings before flooding; Wos:000181977000050; Times Cited: 2; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7917.pdf; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 7917 Serial 118  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: