toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Campbell, A. url  openurl
  Title Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1243-1250  
  Keywords mine water treatment  
  Abstract Numerous techniques for treating, controlling, and preventing acid rock drainage have been applied at the Summitville Mine Superfund Site. Challenging aspects of the remote mine site include the wide-spread occurrence of acid-generating soils and rocks, extensive surface and underground mine workings, and a cold and wet climate. Water treatment was an immediate necessity when the Government took control of the abandoned site in December of 1992. Subsequent reclamation activities have emphasized prevention and control of ARD to minimize future water treatment requirements. A combination of conventional, innovative, and experimental methods are being applied to successfully mitigate ARD at Summitville.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA; Isip:000169875500124; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17110 Serial 165  
Permanent link to this record
 

 
Author Swayze, G.A. url  openurl
  Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
 

 
Author Barton, C.D. url  openurl
  Title Renovation of a failed constructed wetland treating acid mine drainage Type Journal Article
  Year 1999 Publication Environmental Geology Abbreviated Journal  
  Volume 39 Issue 1 Pages 39-50  
  Keywords mine water treatment  
  Abstract Acid mine drainage (AMD) from abandoned underground mines significantly impairs water quality in the Tones Branch watershed in McCreary Co., Kentucky, USA. A 1022-m(2) surface-flow wetland was constructed in 1989 to reduce the I AMD effects, however, the system failed after six months due to insufficient utilization of the treatment area, inadequate alkalinity production and metal overloading. In an attempt to improve treatment efficiencies, a renovation project was designed incorporating two anoxic limestone drains (ALDs) and a series of anaerobic subsurface drains that promote vertical now or mine water through a successive alkalinity producing system (SAPS) of limestone beds overlain by organic compost. Analytical results from the 19-month post-renovation period are very encouraging. Mean iron concentrations have decreased from 787 to 39 mg l(-1), pH increased from 3.38 to 6.46 and acidity has been reduced from 2244 to 199 mg l(-1) (CaCO3 equivalent). Mass removal rates averaged 98% for Al, 95% for Fe, 94% for acidity, 55% for sulfate and 49% for Mn during the study period. The results indicate increased alkalinity production from limestone dissolution and longer residence time have contributed to sufficient buffering and metal retention. The combination of ALDs and SAPS technologies used in the renovation and the sequence in which they were implemented within the wetland system proved to be an adequate and very promising design for the treatment of this and other sources of high metal load AMD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Renovation of a failed constructed wetland treating acid mine drainage; Wos:000084081400004; Times Cited: 5; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17114 Serial 129  
Permanent link to this record
 

 
Author Benner, S.G. url  openurl
  Title Geochemistry of a permeable reactive barrier for metals and acid mine drainage Type Journal Article
  Year 1999 Publication Environmental Science & Technology Abbreviated Journal  
  Volume 33 Issue 16 Pages 2793-2799  
  Keywords mine water treatment  
  Abstract A permeable reactive barrier, designed to remove metals and generate alkalinity by promoting sulfate reduction and metal sulfide precipitation, was installed in August 1995 into an aquifer containing effluent from mine tailings. Passage of groundwater through the barrier results in striking improvement in water quality. Dramatic changes in concentrations of SO4 (decrease of 2000-3000 mg/L), Fe (decrease of 270-1300 mg/L), trace metals (e.g., Ni decreases 30 mg/L), and alkalinity (increase of (800-2700 mg/L) are observed. Populations of sulfate reducing bacteria are 10 000 times greater, and bacterial activity, as measured by dehydrogenase activity, is 10 rimes higher within the barrier compared to the up-gradient aquifer. Dissolved sulfide concentrations increase by 0.2-120 mg/ L, and the isotope S-34 is enriched relative to S-32 in the dissolved phase SO42- within the barrier. Water chemistry, coupled with geochemical speciation modeling, indicates the pore water in the barrier becomes supersaturated with respect to amorphous Fe sulfide. Solid phase analysis of the reactive mixture indicates the accumulation of Fe monosulfide precipitates. Shifts in the saturation states of carbonate, sulfate, and sulfide minerals and most of the observed changes in water chemistry in the barrier and down-gradient aquifer can be attributed, either directly or indirectly, to bacterially mediated sulfate reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Geochemistry of a permeable reactive barrier for metals and acid mine drainage; Wos:000082074500017; Times Cited: 57; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17115 Serial 132  
Permanent link to this record
 

 
Author Boonstra, J. url  openurl
  Title Biological treatment of acid mine drainage Type Journal Article
  Year 1999 Publication Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Pt B 1999 Abbreviated Journal  
  Volume 9 Issue Pages 559-567  
  Keywords mine water treatment  
  Abstract In this paper experience obtained with THIOPAQ technology treating Acid Mine Drainage is described. THIOPAQ Technology involves biological sulfate reduction technology and the removal of heavy metals as metal sulfide precipitates. The technology was developed by the PAQUES company, who have realised over 350 high rate biological treatment plants world wide. 5 plants specially designed for sulfate reduction are successfully operated on a continuous base (1998 status).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biological treatment of acid mine drainage; Isip:000086245100058; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17117 Serial 176  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: