toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Watzlaf, G.R.; Schroeder, K.T.; Kairies, C.L. openurl 
  Title Type Book Whole
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 262-274  
  Keywords passive treatment anoxic limestone drains wetlands sulfate reduction successive alkalinity-producing systems acid mine drainage ALD SAPS RAPS  
  Abstract Ten passive treatment systems, located in Pennsylvania and Maryland, have been intensively monitored for up to ten years. Influent and effluent water quality data from ten anoxic limestone drains (ALDs) and six reducing and alkalinity-producing systems (RAPS) have been analyzed to determine long-term performance for each of these specific unit operations. ALDs and RAPS are used principally to generate alkalinity, ALDs are buried beds of limestone that add alkalinity through dissolution of calcite. RAPS add alkalinity through both limestone dissolution and bacterial sulfate reduction. ALDs that received mine water containing less than 1 mg/L of both ferric iron and aluminum have continued to produce consistent concentrations of alkalinity since their construction. However, an ALD that received 20 mg/L of aluminum experienced a rapid reduction in permeability and failed within five months. Maximum levels of alkalinity (between 150 and 300 m&) appear to be reached after I5 hours of retention. All but one RAPS in this study have been constructed and put into operation only within the past 2.5 to 5 years. One system has been in operation and monitored for more than nine years. AIkalinity due to sulfate reduction was highest during the first two summers of operation. Alkalinity due to a limestone dissolution has been consistent throughout the life of the system. For the six RAPS in this study, sulfate reduction contributed an average of 28% of the total alkalinity. Rate of total alkalinity generation range from 15.6 gd''rn-'to 62.4 gd-'mL2 and were dependent on influent water quality and contact time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Tampa Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 17th Annual National Meeting – American Society for Surface Mining and Reclamation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Long-Term Perpormance of Alkalinity-Producing Passive Systems for the Treatment of Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 5 Tab. Approved no  
  Call Number (down) CBU @ c.wolke @ 17440 Serial 216  
Permanent link to this record
 

 
Author Houston, K.S.; Milionis, P.N.; Eppley, R.L.; Harrington, J.M.; Harrington, J.G. openurl 
  Title Field Demonstration of In-Situ Treatment and Prevention of Acid Mine Drainage in the Abandoned Tide Mine, Indiana County, Pennsylvania Type Journal Article
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords in situ ferrous sulfide precipitation sulfate reduction coal bromide tracer Tide Mine Center Township PA tracer study  
  Abstract A field demonstration of the Green World Science® patented process technology was performed to address acid mine drainage (AMD) at an abandoned bituminous coal mine, the Tide Mine in Center Township, Indiana County, PA. ARCADIS owns an exclusive patent license of the Green World Science® process, which can be used in situ to transform an aerobic, AMD-producing mine pool to a biologically mediated, sulfate-reducing state. The Green World Science® process treats the entire mine pool to address the source of AMD in place. The project was conducted through a grant agreement between the Blacklick Creek Watershed Association, the Pennsylvania Department of Environmental Protection's Bureau of Abandoned Mine Reclamation, and ARCADIS. In conjunction with the characterization of mine pool hydraulics through injection of a bromide tracer, the in situ treatments implemented at Tide Mine include the initial addition of alkalinity to create an environment suitable for biological activity, injection of organic carbon into the mine pool to facilitate microbially mediated metals reduction and precipitation, and injection of carbon dioxide gas into the atmosphere above the mine pool to control the dominant source of oxygen that perpetuates the AMD process. Collectively, these treatments raised the pH from a baseline of approximately 2.5 to over 6 during the demonstration period. The mine pool subsequently maintains a pH above 5 through microbially produced (i.e., bicarbonate) alkalinity. Ferric iron has been reduced to non-detect concentrations within the anaerobic mine pool, and aluminum concentrations have decreased by approximately 30%, with additional metals removal expected as the system becomes controlled by ferrous sulfide precipitation. The injection of carbon dioxide gas into the mine workings decreased oxygen concentrations above the mine pool from over 20% (ambient air conditions) to less than 5% over approximately three months, thus mitigating the source of AMD within the mine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 26th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2; als Datei vorhanden 6 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number (down) CBU @ c.wolke @ 17355 Serial 347  
Permanent link to this record
 

 
Author Gusek, J.J. openurl 
  Title Type Book Whole
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages 1-14 [Cd-Rom]  
  Keywords Constructed wetlands acid mine drainage heavy metals sulfate reduction  
  Abstract There are basically two kinds of biological passive treatment cells for treating mine drainage. Aerobic Cells, containing cattails and other plants, are typically applicable to coal mine drainage where iron and manganese and mild acidity are problematic. Anaerobic Cells or Sulfate-Reducing Bioreactors are typically applicable to metal mine drainage with high acidity and a wide range of metals. Most passive treatment systems employ one or both of these cell types. The track record of aerobic cells in treating coal mine drainage is impressive, especially in the eastern coalfields. Sulfate-reducing bioreactors have tremendous potential at metal mines and coal mines, but have not seen as wide an application. This paper presents the advantages of sulfate-reducing bioreactors in treating mine drainage, including: the ability to work in cold, high altitude environments, handle high flow rates of mildly affected ARD in moderate acreage footprints, treat low pH acid drainage with a wide range of metals and anions including uranium, selenium, and sulfate, accept acid drainagecontaining dissolved aluminum without clogging with hydroxide sludge, have life-cycle costs on the order of $0.50 per thousand gallons, and be integrated into “semi-passive” systems that might be powered by liquid organic wastes. Sulfate reducing bioreactors might not be applicable in every abandoned mine situation. However a phased design program of laboratory, bench, and pilot scale testing has been shown to increase the likelihood of a successful design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Park City Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, Annual Conference – National Association of Abandoned Mine Land Programs Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sulfate-Reducing Bioreactor Design and Operating Issues – Is this the Passive Treatment Technology for your Mine Drainage?; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb. Approved no  
  Call Number (down) CBU @ c.wolke @ 17348 Serial 364  
Permanent link to this record
 

 
Author Eger, P. openurl 
  Title Wetland Treatment for Trace-metal Removal from Mine Drainage – the Importance of Aerobic and Anaerobic Processes Type Journal Article
  Year 1994 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 29 Issue 4 Pages 249-256  
  Keywords copper cobalt nickel zinc ion exchange sulfate reduction adsorption acid mine drainage passive treatment  
  Abstract When designing wetland treatment systems for trace metal removal, both aerobic and anaerobic processes can be incorporated into the final design. Aerobic processes such as adsorption and ion exchange can successfully treat neutral drainage in overlandflow systems. Acid drainage can be treated in anaerobic systems as a result of sulfate reduction processes which neutralize pH and precipitate metals.Test work on both aerobic and anaerobic systems has been conducted in Minnesota. For the past three years, overland flow test systems have successfully removed copper, cobalt, nickel and zinc from neutral mine drainage. Nickel, which is the major contaminant, has been reduced around 90 percent from 2 mg/L to 0.2 mg/L. A sulfate reduction system has successfully treated acid mine drainage for two years, increasing pH from 5 to over 7 and reducing concentrations of all metals by over 90 percent.Important factors to consider when designing wetlands to remove trace metals include not only the type of wetlandrequired but also the size of the system and the residence time needed to achieve the water quality standards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223 ISBN Medium  
  Area Expedition Conference  
  Notes Wetland Treatment for Trace-metal Removal from Mine Drainage – the Importance of Aerobic and Anaerobic Processes; Isi:A1994nv30000032; AMD ISI | Wolkersdorfer Approved no  
  Call Number (down) CBU @ c.wolke @ 17336 Serial 394  
Permanent link to this record
 

 
Author Mustikkamaki, U.-P. openurl 
  Title Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation Type Journal Article
  Year 2000 Publication Vuoriteollisuus = Bergshanteringen Abbreviated Journal  
  Volume 58 Issue 1 Pages 44-47  
  Keywords acid mine drainage anaerobic environment bacteria biodegradation environmental analysis Europe filters Finland metals Outokummun Mine peat pollutants pollution reduction Scandinavia sediments sulfate ion Western Europe zinc 22, Environmental geology  
  Abstract Acid mine drainage (AMD) is one of the most serious environmental problems in the metal-mining industry. AMD is formed by the chemical and bacterial oxidation of sulphide minerals, and it is characterized by low pH values and high sulphate and metals content. The most common method to treat AMD is chemical neutralization. The chemical treatment requires high capital and operating costs and its use is problematic at the closed mines sites. Outokumpu has studied and used sulphate reducing bacteria (SRB) as an alternative method for the treatment of AMD. SRB existing in many natural anaerobic aqueous environments can reduce sulphate to sulphide which precipitates metals as extremely insoluble metal sulphides. Full scale experiments were begun in summer 1995 in the Ruostesuo open pit (depth 46 m) by adding liquid manure as a source of bacteria and press-juice as a growth substrate. The average Zn content of the whole column has decreased from 3,5 mg/l to 0,8 mg/l and below 25 m zinc is 0 mg/l. Similar results have been reached with nickel in the Kotalahti old nickel mine, where bacteria were brought in 1996. We have found that the same bacterial mechanism acts in peat-limestone filters, which Outokumpu has built at several mine sites since 1993.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0042-9317 ISBN Medium  
  Area Expedition Conference  
  Notes Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation; 2001-069868; illus. incl. 3 tables Finland (FIN); GeoRef; Finnish Approved no  
  Call Number (down) CBU @ c.wolke @ 16560 Serial 291  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: