toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author McGregor, R. url  openurl
  Title The use of an in-situ porous reactive wall to remediate a heavy metal plume Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1227-1232  
  Keywords mine water treatment  
  Abstract The oxidation of sulfide minerals at an ore transfer location in Western Canada has resulted in widespread contamination of underlying soil and groundwater. The oxidation of sulfide minerals has released sulfate [SO4] and heavy metals including cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn] into the groundwater. A compost-based sulfate-reducing reactive wall was installed in the path of the plume in an attempt to reduce the potential impact of the heavy metals on a down-gradient marine inlet. Monitoring of the reactive wall over a 21-month period has shown that Cu concentrations decrease from over 4000 mug/L to less than 5 mug/L. Cadmium, Ni, Pb, and Zn concentrations also show similar decreases with treated concentrations generally being observed near or below detection limits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The use of an in-situ porous reactive wall to remediate a heavy metal plume; Isip:000169875500122; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17109 Serial 166  
Permanent link to this record
 

 
Author Campbell, A. url  openurl
  Title Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1243-1250  
  Keywords mine water treatment  
  Abstract Numerous techniques for treating, controlling, and preventing acid rock drainage have been applied at the Summitville Mine Superfund Site. Challenging aspects of the remote mine site include the wide-spread occurrence of acid-generating soils and rocks, extensive surface and underground mine workings, and a cold and wet climate. Water treatment was an immediate necessity when the Government took control of the abandoned site in December of 1992. Subsequent reclamation activities have emphasized prevention and control of ARD to minimize future water treatment requirements. A combination of conventional, innovative, and experimental methods are being applied to successfully mitigate ARD at Summitville.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA; Isip:000169875500124; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17110 Serial 165  
Permanent link to this record
 

 
Author Swayze, G.A. url  openurl
  Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number (up) CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
 

 
Author Bernoth, L.; Firth, I.; McAllister, P.; Rhodes, S. openurl 
  Title Biotechnologies for Remediation and Pollution Control in the Mining Industry Type Journal Article
  Year 2000 Publication Miner. Metall. Process. Abbreviated Journal  
  Volume 17 Issue 2 Pages 105-111  
  Keywords bioremediation pollution control soil contamination solvents oils diesel hydrocarbons cyanide acid rock drainage microbial mats manganese bioremediation oxidation drainage removal water algae  
  Abstract As biotechnologies emerge from laboratories into main-stream application, the benefits they, offer are judged against competing technologies and business criteria. Bioremediation technologies have passed this test and are now widely used for the remediation of contaminated soils and ground waters. Bioremediation includes several distinct techniques that are used for the treatment of excavated soil and includes other techniques that are used for in situ applications. They play an important and growingrole in the mining industry for cost-effective waste management and site remediation. Most applications have been for petroleum contaminants, but advances continue to be made in the treatment of more difficult organ ic and inorganic species. This paper discusses the role of biotechnologies in remediation and pollution control from a mining-industry perspective. Several case studies are presented, including the land application of oily wastewater from maintenance workshops, the composting of hydrocarbon-contaminated soils and sludges, the bioventing of hydrocarbon solvents, the intrinsic bioremediation of diesel hydrocarbons, the biotreatment of cyanide in water front a gold mine, and the removal of manganese from acidic mine drainage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0747-9182 ISBN Medium  
  Area Expedition Conference  
  Notes Biotechnologies for Remediation and Pollution Control in the Mining Industry; Isi:000087094600005; AMD ISI | Wolkersdorfer Approved no  
  Call Number (up) CBU @ c.wolke @ 17307 Serial 450  
Permanent link to this record
 

 
Author Fripp, J.; Ziemkiewicz, P.F.; Charkavorki, H. openurl 
  Title Acid Mine Drainage Treatment Type Journal Article
  Year 2000 Publication Ecosystem Management and Restoration Research Program Technical Notes Abbreviated Journal  
  Volume Erdc Tn-Emrrp-Sr-14 Issue Pages 7  
  Keywords AMD treatment sampling  
  Abstract Contaminated water flowing from abandoned coal mines is one of the most significant contributors to water pollution in former and current coal-producing areas. Acid mine drainage (AMD) can have severe impacts to aquatic resources, can stunt terrestrial plant growth and harm wetlands, contaminate groundwater, raise water treatment costs, and damage concrete and metal structures. In the Appalachian Mountains of the eastern United States alone, more than 7,500 miles of streams are impacted. The Pennsylvania Fish and Boat Commission estimates that the economic losses on fisheries and recreational uses are approximately $67 million annually (ref). While most modern coal-mining operations (Figure 1) must meet strict environmental regulations concerning mining techniques and treatment practices, there are thousands of abandoned mine sites in the United States (Figure 2). Treatment of a single site can result in the restoration of several miles of impacted streams. The purpose of this document is to briefly summarize key issues related to AMD treatment. This document is intended as a brief overview; thus, it is neither inclusive nor exhaustive. The technical note presents the preliminary planning issues  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid Mine Drainage Treatment; 2; als Datei vorhanden 5 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number (up) CBU @ c.wolke @ 17344 Serial 374  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: