toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Ueki, K.; Kotaka, K.; Itoh, K.; Ueki, A. url  openurl
  Title Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals Type Journal Article
  Year 1988 Publication Journal of Fermentation Technology Abbreviated Journal  
  Volume 66 Issue 1 Pages  
  Keywords mine water treatment  
  Abstract The use of an anaerobic digester slurry of cattle waste for the reclamation of acid mine water was examined. When the digester slurry was mixed with acid mine water, anaerobic digestion, including sulfate reduction and methanogenesis, was enhanced. In the mixture of acid mine water and the digester slurry, sulfate reduction proceeded without diminishing methanogenesis. The digester slurry and its supernatant (SDF-sup) showed a significant capacity to act as a strong alkaline reagent, and the pH of the acid mine water was markedly elevated by the addition of the digester slurry of SDF-sup even at the low ratio of 1% (v/v). Precipitation of heavy metals in the acid mine water occurred as the pH was elevated by the addition of SDF-sup. When the digester slurry was added at the ratio of 5% (v/v) to acid mine water which had been pretreated with SDF-sup, the rate of sulfate reduction increased with increasing the concentration of sulfate in the mixture up to about 1,400 mg·l-1. In acid mine water pretreated with SDF-sup and supplemented with the digester slurry at the ratio of 5% (v/v), the maximum amount of sulfate reduced within 20 d of incubation was about 1,000 mg·l-1, and the maximum rate of sulfate reduction was about 120 mg SO42-·l-1·d-1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0385-6380 ISBN Medium  
  Area Expedition Conference  
  Notes Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals; Amsterdam [u.a.] : Elsevier; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7036.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7036 Serial 75  
Permanent link to this record
 

 
Author (down) Turek, M.; Gonet, M. url  openurl
  Title Nanofiltration in the utilization of coal-mine brines Type Journal Article
  Year 1997 Publication Desalination Abbreviated Journal  
  Volume 108 Issue 1-3 Pages 171-177  
  Keywords Entsalzung Entsalzungsanlage Umkehrosmose Membran Kohlenbergwerk Natriumchlorid Abwasser Verdampfung Energieverbrauch Nanofiltration mine water treatment  
  Abstract The utilization of saline coal mine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland. In the case of most concentrated waters, the so-called coalmine brines, the method of concentrating by evaporation in a twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. A considerable restriction in the utilization of coal mine brines is the high energy consumption in these methods of evaporation. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulfate ions in the coal mine brines. The present paper deals with the application of nanofiltration in the pretreatment of the brine. The application of nanofiltration membranes with an adequate pore size, including charged membranes, makes it possible to decrease the concentration of divalent ions in the permeate practically without any changes in the concentration of sodium chloride. Then the permeate may be concentrated in a multi-stage evaporation process, e.g. MSF, without any risk of the crystallization of gypsum. A combination of NF and MSF ought to set down the unit costs of the concentration of coal mine brines below those of mere evaporation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Medium  
  Area Expedition Conference  
  Notes Feb; Nanofiltration in the utilization of coal-mine brines; Wos:A1997wk45600023; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/8724.pdf; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8724 Serial 29  
Permanent link to this record
 

 
Author (down) Turek, M. url  openurl
  Title Recovery of NaCl from saline mine water in the ED-MSF system Type Journal Article
  Year 2000 Publication 8th World Salt Symposium, Vols 1 and 2 Abbreviated Journal  
  Volume Issue Pages 471-475  
  Keywords mine water treatment  
  Abstract A considerable part of water obtained by drainage of Polish coal-mines is saline which creates substantial ecological problems. The load of salt (mainly sodium chloride) amounts to 5 min t/year. Despite the utilisation of saline coalmine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland there are only two installations utilising coal-mine waters and producing 100,000 t salt per year. In the case of the most concentrated waters, the so-called coal-mine brines, the method of concentrating by evaporation in twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. In the case of low salinity waters they are preconcentrated first by RO method. High energy consumption in above-mentioned methods of evaporation is a considerable restriction in the utilisation of coal-mine brines. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulphate ions in the coal-mine waters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-444-50065-6 ISBN Medium  
  Area Expedition Conference  
  Notes May; Recovery of NaCl from saline mine water in the ED-MSF system; Isip:000088786800075; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17092 Serial 172  
Permanent link to this record
 

 
Author (down) Tsukamoto, T.K.; Miller, G.C. url  openurl
  Title Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage Type Journal Article
  Year 1999 Publication Water Res. Abbreviated Journal  
  Volume 33 Issue 6 Pages 1365-1370  
  Keywords mine water treatment mining activity sulfate-reducing bacteria microbial activity acid mine drainage methanol passive treatment systems sulfate-reducing bacterium sp-nov  
  Abstract Sulfate reducing passive bioreactors are increasingly being used to remove metals and raise the pH of acidic waste streams from abandoned mines. These systems commonly use a variety of organic substrates (i.e. manure, wood chips) for sulfate reduction. The effectiveness of these systems decreases as easily accessible reducing equivalents are consumed in the substrate through microbial activity. Using column studies at room temperature (23-26 degrees C), we investigated the addition of lactate and methanol to a depleted manure substrate as a method to reactivate a bioreactor that had lost >95% of sulfate reduction activity. A preliminary experiment compared sulfate removal in gravity fed, flow through bioreactors in which similar masses of each substrate were added to the influent solution. Addition of 148 mg/l lactate resulted in a 69% reduction in sulfate concentration from 300 to 92 mg/l, while addition of 144 mg/l methanol resulted in an 88% reduction in sulfate concentration from 300 to 36 mg/l. Because methanol was found to be an effective sulfate reducing substrate, it was chosen for further experiments due to its inherent physical properties (cost, low freezing point and low viscosity liquid) that make it a superior substrate for remote, high elevation sites where freezing temperatures would hamper the use of aqueous solutions. In these column studies, water containing sulfate and ferrous iron was gravity-fed through the bioreactor columns, along with predetermined methanol concentrations containing reducing equivalents to remove 54% of the sulfate. Following an acclimation period for the columns, sulfate concentrations were reduced from of 900 mg/l in the influent to 454 mg/l in the effluent, that reflects a 93% efficiency of electrons from the donor to the terminal electron acceptor. Iron concentrations were reduced from 100 to 2 mg/l and the pH increased nearly 2 units. (C) 1999 Elsevier Science Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Apr; Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage; Isi:000079485400004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10197.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 10197 Serial 50  
Permanent link to this record
 

 
Author (down) Tempel, R.N. url  openurl
  Title A quantitative approach to optimize chemical treatment of acid drainage using geochemical reaction path modeling methods: Climax Mine, Colorado Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1053-1058  
  Keywords mine water treatment  
  Abstract The Climax Mine, near Leadville, Colorado treats acid drainage in a lime neutralization chemical treatment system. Chemical treatment has been successful in reducing the concentration of metals to below surface water discharge effluent limits, but lime usage has not been optimized. A geochemical modeling approach has been developed to increase the efficiency of lime neutralization. The modeling approach incorporates two steps: (1)calibration, and (2) calculation of amount of lime needed to increase pH and remove metals. Results of our work quantify the lime treatment process and improve our ability to predict overall water quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A quantitative approach to optimize chemical treatment of acid drainage using geochemical reaction path modeling methods: Climax Mine, Colorado; Isip:000169875500102; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17102 Serial 168  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: