toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Sato, D.; Tazaki, K. openurl 
  Title Calcification treatment of mine drainage and depositional formula of heavy metals Type Journal Article
  Year 2000 Publication Chikyu Kagaku = Earth Science Abbreviated Journal  
  Volume 54 Issue 5 Pages 328-336  
  Keywords acid mine drainage Asia calcification deposition ettringite Far East heavy metals Ishikawa Japan Japan lime Ogoya Mine pollution sulfates waste water water treatment 22, Environmental geology  
  Abstract Depositional formula of heavy metals after disposal of the mine drainage from the Ogoya Mine in Ishikawa Prefecture, Japan, was mineralogically investigated. Strong acidic wastewater (pH 3.5) from pithead of the mine contains high concentration of heavy metals. In this mine, neutralizing coagulation treatment is going on by slaked lime (calcium hydroxides: Ca(OH) (sub 2) ). Core samples were collected at disposal pond to which the treated wastewater flows. The core samples were divided into 44 layers based on the color variation. The mineralogical and chemical compositions of each layer were analyzed by an X-ray powder diffractometer (XRD), an energy dispersive X-ray fluorescence analyzer (ED-XRF) and a NCS elemental analyzer. The upper parts are rich in brown colored layers, whereas discolored are the deeper parts. The color variation is relevant to Fe concentration. Brown colored core sections are composed of abundant hydrous ferric oxides with heavy metals, such as Cu, Zn, and Cd. On the other hand, S concentration gradually increases with depth. XRD data indicated that calcite decreases with increasing depth, and ettringite is produced at the deeper parts. Cd concentration shows similar vertical profile to those of calcite and ettringite. The results revealed that hydrous ferric oxides, calcite and ettringite are formed on deposition, whereby incorporating the heavy metals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-6611 ISBN Medium  
  Area Expedition Conference  
  Notes Calcification treatment of mine drainage and depositional formula of heavy metals; 2001-032610; References: 19; illus. incl. 1 table, sketch map Japan (JPN); GeoRef; Japanese Approved no  
  Call Number CBU @ c.wolke @ 16543 Serial 252  
Permanent link to this record
 

 
Author (down) Peterson, D.E.; Kindley, M.J. openurl 
  Title The Golden Cross Mine water management system Type Journal Article
  Year 1994 Publication New Zealand Mining Abbreviated Journal  
  Volume 14 Issue Pages 15-21  
  Keywords Australasia Coromandel Peninsula cyanides gold ores Golden Cross Mine metal ores mines New Zealand North Island tailings Waihi New Zealand waste water water management water treatment 30, Engineering geology  
  Abstract Because of its location in the sensitive Coromandel Peninsula, strict water management and environmental requirements had to be met on the Golden Cross Mine Project. This led to the development of new technologies for cyanide recovery and the adoption of advanced water management and water treatment systems. This paper discusses the water management and treatment system adopted for contaminated water at Golden Cross. While permit discharge levels must be and are met for mine discharge waters, the ultimate success of the water management system is demonstrated by the results downstream; biological surveys show no changes to the resident aquatic life in the river.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1170-4209 ISBN Medium  
  Area Expedition Conference  
  Notes The Golden Cross Mine water management system; 1998-055867; New Zealand (NZL); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16732 Serial 271  
Permanent link to this record
 

 
Author (down) Parker, G.; Noller, B.; Waite, T.D. isbn  openurl
  Title Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia Type Book Chapter
  Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Australasia Australia buffers carbonate ion geochemistry Northern Territory Australia Pine Creek Geosyncline pollution pyrite sulfides surface water tropical environment water quality 22, Environmental geology  
  Abstract Surface waters in the Pine Creek Geosyncline (located in Australia's “Top End”, defined as the area of Australia north of 15 degrees S) are characterized by their low carbonate buffering capacity. These waters are buffered by silicate weathering and hence are slightly acidic, ranging in pH from 4.0 to 6.0. The Pine Creek Geosyncline contains most of the Top Ends' economic mineral deposits and characteristically shows no correlation between carbonate minerals and sulfidic orebodies hosting gold deposits (unlike uranium deposits). Thus many gold mines do not have ready access to carbonate minerals for buffering acid mine drainage (AMD). It is possible that locally available fast-weathering silicate minerals may be used to buffer AMD seeps. The buffering intensity of silicate minerals exceeds that of carbonate minerals, but their slow dissolution kinetics has ensured that these materials have received little attention in treating AMD. In addition, carbonate mineral dissolution is retarded when contacted with intense AMD solutions due to the formation of surface coatings of iron minerals. The lower pH range of silicate mineral dissolution may prevent the formation of such coatings. The Pine Creek Geosyncline consists of a complex geochemistry, and a number of fast-weathering silicate minerals have been noted in various areas. The difficulty in assessing such minerals for use in buffering AMD is the lack of kinetic data available under conditions prevalent AMD (i.e., low pH solutions saturated with aluminium and silica). This study sets out to evaluate the applicability of using such minerals to treat AMD surface seeps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0886670470 Medium  
  Area Expedition Conference  
  Notes Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia; GeoRef; English; 2000-048644; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 36; illus. incl. 2 tables Approved no  
  Call Number CBU @ c.wolke @ 16594 Serial 273  
Permanent link to this record
 

 
Author (down) Matsuoka, I. openurl 
  Title Mine drainage treatment Type Journal Article
  Year 1996 Publication Shigen to Sozai = Journal of the Mining and Materials Processing Institute of Japan Abbreviated Journal  
  Volume 112 Issue 5 Pages 273-281  
  Keywords acid mine drainage; Asia; Far East; Japan; mine dewatering; mine drainage; mines; pollution; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0916-1740 ISBN Medium  
  Area Expedition Conference  
  Notes Mine drainage treatment; 1997-062437; References: 66; illus. incl. 9 tables Japan (JPN); GeoRef; Japanese Approved no  
  Call Number CBU @ c.wolke @ 6342 Serial 305  
Permanent link to this record
 

 
Author (down) Lin, C.; Lu, W.; Wu, Y. openurl 
  Title Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination Type Journal Article
  Year 2005 Publication Australian Journal of Soil Research Abbreviated Journal  
  Volume 43 Issue 7 Pages 819-826  
  Keywords Contamination and remediation Irrigated agriculture Soil studies geographical abstracts: physical geography soils (71 5 14) international development abstracts: agriculture and rural development (74 1 8) ecological abstracts: terrestrial ecology (73 4 2) bioaccumulation irrigation agricultural soil acid mine drainage pH crop plant heavy metal China Far East Asia Eurasia  
  Abstract Agricultural soils irrigated with acidic mine water from the Guangdong Dabaoshan Mine, China, were investigated. The pH of the soils could be as low as 3.9. However, most of the mineral acids introduced into the soils by irrigation were transformed to insoluble forms through acid buffering processes and thus temporarily stored in the soils. Different heavy metals exhibited different fraction distribution patterns, with Zn and Cu being mainly associated with organic matter and Pb being primarily bound to oxides (statistically significant at P = 0.05). Although the mean of exchangeable Cd was greatest among the Cd fractions, there was no statistically significant difference between the exchangeable Cd and the oxide-bound Cd (the 2nd greatest fraction) or between the exchangeable Cd and the carbonate-bound Cd (the 3rd greatest fraction). It was also found that there were generally good relationships between the concentrations of various Zn, Cu, Pb, and Cd fractions and pH, suggesting that a major proportion of each heavy metal in the soils was mainly derived from the acidic irrigation water. The results also show that the crops grown in these soils were highly contaminated by heavy metals, particularly Cd. The concentration of Cd in the edible portions of most crops was far in excess of the limits set in China National Standards for Vegetables and Fruits and this can be attributable to the extremely high transfer rate of Cd from the soils to the crops under the cropping system adopted in the study area. < copyright > CSIRO 2005.  
  Address C. Lin, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China cxlin@scau.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-9573 ISBN Medium  
  Area Expedition Conference  
  Notes Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination; 2828050; Australia 29; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17496 Serial 314  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: