toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Sierra-Alvarez, R. url  openurl
  Title Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors Type Journal Article
  Year 2006 Publication Water Sci. Technol. Abbreviated Journal  
  Volume 54 Issue 2 Pages 179-185  
  Keywords mine water treatment  
  Abstract The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed V with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 Mg Cu2+vertical bar(-1); 10 mg Ni2+vertical bar(-1), 10 mg Zn2+vertical bar(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation Cn rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors; Wos:000240449300024; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16943 Serial 106  
Permanent link to this record
 

 
Author (up) Skousen, J.G. url  openurl
  Title Acid-Mine Drainage Treatment Alternatives Type Journal Article
  Year 1992 Publication Land Reclamation : Advances in Research & Technology Abbreviated Journal  
  Volume Issue Pages 297-303  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid-Mine Drainage Treatment Alternatives; Isip:A1992by10s00035; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 9016 Serial 147  
Permanent link to this record
 

 
Author (up) Skousen, J.G. url  openurl
  Title An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs Type Journal Article
  Year 1991 Publication Environmental Management for the 1990s Abbreviated Journal  
  Volume Issue Pages 173-178  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs; Isip:A1991bs89e00024; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 9041 Serial 148  
Permanent link to this record
 

 
Author (up) Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D. url  openurl
  Title Utilization of a ceramic membrane for acid mine drainage treatment Type Journal Article
  Year 1997 Publication Tailings and Mine Waste '97 Abbreviated Journal  
  Volume Issue Pages 453-460  
  Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment  
  Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 90-5410-857-6 ISBN Medium  
  Area Expedition Conference  
  Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8744 Serial 135  
Permanent link to this record
 

 
Author (up) Swayze, G.A. url  openurl
  Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: