toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Reisinger, R.W.; Gusek, J. openurl 
  Title Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming Type Journal Article
  Year 1999 Publication Min. Eng. Abbreviated Journal  
  Volume 51 Issue 8 Pages 49-53  
  Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine copper hydrogeology mine drainage United States Wyoming Ferris Haggarty Mine  
  Abstract An historic underground copper mine in Wyoming is discharging neutral but copper-laden water into a pristine creek. The EPA-deferred site qualifies for reclamation by the Wyoming Abandoned Mine Land (AML) program. The cleanup goal is to restore the discharge so that the creek can eventually support a trout fishery. Hydrological and geochemical investigations underground have suggested two sources of mine water: one clean and the other containing copper. Results of bench- and pilot-scale tests support the viability of using low-cost passive treatment techniques to reduce copper concentrations in the near-freezing mine discharge.  
  Address R.W. Reisinger, Knight Piesold LLC, Denver, CO, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-5187 ISBN Medium  
  Area Expedition Conference  
  Notes Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming; 0434643; United-States 5; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17637 Serial 263  
Permanent link to this record
 

 
Author (down) Ntengwe, F.W. url  openurl
  Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
  Year 2005 Publication Phys. Chem. Earth Abbreviated Journal  
  Volume 30 Issue 11-16 Spec. Iss. Pages 726-734  
  Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World  
  Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.  
  Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17497 Serial 24  
Permanent link to this record
 

 
Author (down) Miller, S.D. isbn  openurl
  Title Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands Type Book Chapter
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; controls; decontamination; environmental analysis; environmental effects; geochemistry; ground water; land management; lime; oxidation; pH; pollutants; pollution; preventive measures; risk assessment; soils; sulfides; surface water; waste disposal; waste management 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Lewis Publishers Place of Publication Boca Raton Editor Wong, M.H.; Wong, J.W.C.; Baker, A.J.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 157504109x Medium  
  Area Expedition Conference  
  Notes Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands; GeoRef; English; 2000-057936 Approved no  
  Call Number CBU @ c.wolke @ 5951 Serial 298  
Permanent link to this record
 

 
Author (down) LaPointe, F.; Fytas, K.; McConchie, D. url  openurl
  Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
  Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal  
  Volume 19 Issue 1 Pages 57-65  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management  
  Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-5265 ISBN Medium  
  Area Expedition Conference  
  Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16786 Serial 12  
Permanent link to this record
 

 
Author (down) Laine, D.M.; Jarvis, A.P. url  openurl
  Title Engineering design aspects of passive in situ remediation of mining effluents Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 113-126  
  Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive waste management pyrite iron sulfide remediation mine drainage effluent  
  Abstract Passive treatment of contaminated effluents can offer a 'low cost' management opportunity to remediate drainages to the standards required by enforcement agencies. However, the initial cost of construction of passive treatment systems is significant and often in excess of that for active treatment systems. It is therefore important that the engineering design of the passive systems produces an effective and efficient scheme to enable the construction and maintenance costs to be minimised as far as possible. Possible parameters for the design of passive systems are suggested to seek to obtain uniformity in size and layout of treatment elements where this may be possible. Passive treatment systems include aeration systems, sedimentation ponds, aerobic and anaerobic wetlands, anoxic limestone drains and reducing alkalinity producing systems. Most active treatment systems also include passive elements in the treatment stream. The basic design considerations that should be considered to ensure the construction of efficient systems are discussed.  
  Address D.M. Laine, IMC Consulting Engineers, PO Box 18, Sutton-in-Ashfield NG17 2NS, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes Engineering design aspects of passive in situ remediation of mining effluents; 2530416; United-Kingdom 22; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17523 Serial 60  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: