toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ford, C.T.; Bayer, J.F. openurl 
  Title Type Book Whole
  Year 1973 Publication Abbreviated Journal  
  Volume Issue Pages 123 pp  
  Keywords acid mine drainage  
  Abstract Epa R2 73 150  
  Address  
  Corporate Author Thesis  
  Publisher U.S. Government Print. Offfice Place of Publication Washington Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Treatment of ferrous acid mine drainage with activated carbon Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of ferrous acid mine drainage with activated carbon; 99; AMD ISI | Wolkersdorfer; TUB München Approved no  
  Call Number CBU @ c.wolke @ 9626 Serial 377  
Permanent link to this record
 

 
Author Foucher, S.; Battaglia-Brunet, F.; Ignatiadis, I.; Morin, D. url  openurl
  Title Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery Type Journal Article
  Year 2001 Publication Chemical Engineering Science Abbreviated Journal  
  Volume 56 Issue 4 Pages 1639-1645  
  Keywords Acid mine drainage Sulfate-reducing bacteria Sulfide precipitation Hydrogen transfer Fixed bed column reactor  
  Abstract Acid-mine drainage can contain high concentrations of heavy metals and release of these contaminants into the environment is generally avoided by lime neutralization. However, this classical treatment is expensive and generates large amounts of residual sludge. The selective precipitation of metals using H2S produced biologically by sulfate-reducing bacteria has been proposed as an alternative process. Here, we report on experiments using real effluent from the disused Chessy-les-Mines mine-site at the laboratory pilot scale. A fixed-bed bioreactor, fed with an H2/CO2 mixture, was used in conjunction with a gas stripping column. The maximum rate of hydrogen transfer in the bioreactor was determined before inoculation. kLa was deduced from measurements of O2 using Higbie and Danckwert's models which predict a dependence on diffusivity. The dynamic method of physical absorption and desorption was used. The maximum rate of H2 transfer suggests that this step should not be a limiting factor. However, an increase in H2 flow rate was observed to induce an increase in sulfate reduction rate. For the precipitation step, the gas mixture from the bioreactor was bubbled into a stirred reactor fed with the real effluent. Cu and Zn could be selectively recovered at pH=2.8 and pH=3.5, respectively. Other impurities such as Ni and Fe could also be removed at pH=6 by sulfide precipitation. Part of the outlet stream from the bioreactor was used to regulate and maintain the pH during sulfide precipitation by feeding the outlet stream back into the bioreactor. The replacement of synthetic medium with real effluent had a positive effect on sulfate reduction rate which increased by 30-40%. This improvement in bacterial efficiency may be related to the large range of oligo-elements provided by the mine-water. The maximum sulfate reduction rate observed with the real effluent was 200 mgl-1 h-1, corresponding to a residence time of 0.9 day. A preliminary cost estimation based on a treatment rate of 5 m3 h-1 of a mine effluent containing 5 gl-1 SO42- is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10064.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10064 Serial 54  
Permanent link to this record
 

 
Author Fraser, W.W.; Robertson, J.D. openurl 
  Title Subaqueous disposal of reactive mine waste; an overview and update of case studies; MEND, Canada Type Book Chapter
  Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal  
  Volume Issue Pages 250-259  
  Keywords acid mine drainage; British Columbia; Canada; chemical reactions; experimental studies; ground water; lakes; Manitoba; Mine Environment Neutral Drainage Program; pollution; pore water; remediation; surface water; tailings; waste disposal; water quality; Western Canada 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Subaqueous disposal of reactive mine waste; an overview and update of case studies; MEND, Canada; GeoRef; English; 2007-045178; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 18; illus. incl. 2 tables, sketch map Approved no  
  Call Number CBU @ c.wolke @ 6585 Serial 376  
Permanent link to this record
 

 
Author Fricke, J.; Blickwedel, R.; Hagerty, P. openurl 
  Title Biotreatment of metal mine waste waters; case histories Type Journal Article
  Year 1997 Publication Open-File Report – US Geological Survey Abbreviated Journal  
  Volume Of 97-0496 Issue Pages 25  
  Keywords abandoned mines acid mine drainage bacteria bioremediation chemical composition concentration efficiency geochemistry metals mines pollution remediation USGS waste water water quality water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-1497 ISBN Medium  
  Area Expedition Conference  
  Notes Biotreatment of metal mine waste waters; case histories; 1; GeoRef: 98-68755 160101 / € 0; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9627 Serial 375  
Permanent link to this record
 

 
Author Fyson, A.; Nixdorf, B.; Steinberg, C.E.W. url  openurl
  Title Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes Type Book Chapter
  Year 1998 Publication Water, Air and Soil Pollution Abbreviated Journal  
  Volume Issue Pages 353-363  
  Keywords acid mine drainage; acidification; ammonium ion; Brandenburg Germany; Central Europe; concentration; dissolved materials; ecology; Europe; eutrophication; ferric iron; Germany; iron; lacustrine environment; Lusatia; mass balance; metals; nitrate ion; pollutants; pollution; pore water; remediation; sediment-water interface; sediments; surface water; titration; transport 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication 108 Editor Peiffer, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes; GeoRef; English; 1999-021233; Conference on Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes, Bayreuth, Federal Republic of Germany, Feb. 1997 References: 17; illus. Approved no  
  Call Number CBU @ c.wolke @ 6102 Serial 21  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: