toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Anonymous; Kontopoulos, A. isbn  openurl
  Title Acid mine drainage control Type Book Chapter
  Year 1998 Publication Effluent treatment in the mining industry Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; backfill; cement; clastic sediments; discharge; dust; effluents; gaseous phase; heavy metals; liquid waste; mines; pollutants; pollution; reclamation; recycling; sediments; smelting; soils; solid waste; surface water; tailings; tailings ponds; toxic materials; waste disposal; waste management; waste rock 22, Environmental geology  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher University of Concepcion Place of Publication Concepcion Editor Castro, S.H.; Vergara, F.; Sanchez, M.A.  
  Language Summary Language Original Title  
  Series Editor University of Concepcion, D. of M.E.C. Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9562271560 Medium  
  Area Expedition Conference  
  Notes Acid mine drainage control; GeoRef; English; 2002-047083; References: 154; illus. incl. 10 tables Approved no  
  Call Number CBU @ c.wolke @ 6214 Serial 478  
Permanent link to this record
 

 
Author Anonymous isbn  openurl
  Title Type Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; discharge; effluents; industrial waste; mines; mining; pollution; smelting; soils; surface water; tailings; toxic materials; waste disposal; waste management; water pollution; water treatment 22, Environmental geology  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher University of Concepcion Place of Publication Concepcion Editor Castro, S.H.; Vergara, F.; Sanchez, M.A.; University of Concepcion, D. of M.E.C.  
  Language Summary Language Original Title  
  Series Editor Series Title Effluent treatment in the mining industry Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9562271560 Medium  
  Area Expedition Conference  
  Notes Effluent treatment in the mining industry; 2002-047082; GeoRef; English; Individual chapters are cited separately illus. Approved no  
  Call Number CBU @ c.wolke @ 6212 Serial 481  
Permanent link to this record
 

 
Author Al-Abed, S.; Allen, D.; Bates, E.; Reisman, D. openurl 
  Title Lime treatment lagoons technology for treating acid mine drainage from two mining sites Type Journal Article
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; case studies; Copper Mine; drainage; geochemistry; heavy metals; hydrochemistry; Leviathan Mine; mining; Nevada; pH; pollutants; pollution; precipitation; remediation; runoff; surface water; Tennessee; United States; waste lagoons; water treatment 22 Environmental geology; 02B Hydrochemistry  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Hardrock mining 2002; issues shaping the industry Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2007-046170; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5621 Serial 487  
Permanent link to this record
 

 
Author Kuyucak, N. url  openurl
  Title Acid mine drainage prevention and control options Type Journal Article
  Year 2002 Publication CIM Bull. Abbreviated Journal  
  Volume 95 Issue 1060 Pages 96-102  
  Keywords acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management  
  Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.  
  Address (up) Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0317-0926 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17532 Serial 64  
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J. url  openurl
  Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
  Year 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal  
  Volume 17 Issue 4 Pages 99-107  
  Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim  
  Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.  
  Address (up) Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-3629 ISBN Medium  
  Area Expedition Conference  
  Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17555 Serial 67  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: