toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bagdy, I.; Kaocsány, L. openurl 
  Title Treatment of mine water for the protection of pumps Type Journal Article
  Year 1982 Publication Proceedings, 1st International Mine Water Congress, Budapest, Hungary Abbreviated Journal  
  Volume ABCD Supplementary volume Issue Pages 201-214  
  Keywords pumps mine water treatment sediment Hungary karst  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of mine water for the protection of pumps; 1; 3 Abb.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9509 Serial 470  
Permanent link to this record
 

 
Author Turek, M. url  openurl
  Title Recovery of NaCl from saline mine water in the ED-MSF system Type Journal Article
  Year 2000 Publication 8th World Salt Symposium, Vols 1 and 2 Abbreviated Journal  
  Volume Issue Pages 471-475  
  Keywords mine water treatment  
  Abstract (up) A considerable part of water obtained by drainage of Polish coal-mines is saline which creates substantial ecological problems. The load of salt (mainly sodium chloride) amounts to 5 min t/year. Despite the utilisation of saline coalmine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland there are only two installations utilising coal-mine waters and producing 100,000 t salt per year. In the case of the most concentrated waters, the so-called coal-mine brines, the method of concentrating by evaporation in twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. In the case of low salinity waters they are preconcentrated first by RO method. High energy consumption in above-mentioned methods of evaporation is a considerable restriction in the utilisation of coal-mine brines. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulphate ions in the coal-mine waters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-444-50065-6 ISBN Medium  
  Area Expedition Conference  
  Notes May; Recovery of NaCl from saline mine water in the ED-MSF system; Isip:000088786800075; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17092 Serial 172  
Permanent link to this record
 

 
Author Ye, Z.H. url  openurl
  Title Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002 Type Journal Article
  Year 2004 Publication Wetlands Ecosystems in Asia: Function and Management Abbreviated Journal  
  Volume 1 Issue Pages 413-434  
  Keywords mine water treatment  
  Abstract (up) A constructed wetland system in Guangdong Province, South of China has been used for treating Pb/Zn mine discharge since 1984. In this chapter, the performance of this system in the purification of mine discharge, metal accumulation in different ecological compartments and ecological succession within the system during the period of 1984-2002 has been reviewed. The data show that the wetland system not only effectively remove metals (mainly Pb, Zn, Cd and Cu) and total suspended solids from the mine discharge over a long period leading to significant improvement in water quality, but also gradually increase diversity and abundance of living organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002; Isip:000226088800023; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16997 Serial 155  
Permanent link to this record
 

 
Author Ye, Z.H. url  openurl
  Title Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate Type Journal Article
  Year 2001 Publication Journal of Environmental Quality Abbreviated Journal  
  Volume 30 Issue 4 Pages 1464-1473  
  Keywords mine water treatment  
  Abstract (up) A flow-through wetland treatment system was constructed to treat coal combustion by-product leachate from an electrical power station at Springdale, Pennsylvania. In a nine-compartment treatment system, four cattail (Typha latifolia L.) wetland cells (designated Cells I through 4) successfully removed iron (Fe) and manganese (Mn) from the inlet water; Fe and Mn concentrations were decreased by an average of 91% in the first year (May 1996-May 1997), and by 94 and 98% in the second year (July 1997-June 1998), respectively. Cobalt (Co) and nickel (Ni) were decreased by an average of 39 and 47% in the first year, and 98 and 63% in the second year, respectively. Most of the metal removed by the wetland cells was accumulated in sediments, which constituted the largest sink. Except for Fe, metal concentrations in the sediments tended to be greater in the top 5 em of sediment than in the 5- to 10- or 10- to 15-cm layers, and in Cell I than in Cells 2, 3, and 4. Plants constituted a much smaller sink for metals; only 0.91, 4.18, 0.19, and 0.38% of the Fe, Mn, Co, and Ni were accumulated annually in the aboveground tissues of cattail, respectively. A greater proportion of each metal (except Mn) was accumulated in cattail fallen litter and submerged Chara (a macroalga) tissues, that is, 2.81, 2.75, and 1.05% for Fe, Co, and Ni, respectively. Considerably higher concentrations of metals were associated with cattail roots than shoots, although Mn was a notable exception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Removal and distribution of iron, manganese, cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate; Wos:000174863000040; Times Cited: 15; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17061 Serial 122  
Permanent link to this record
 

 
Author Bertrand, S. url  openurl
  Title Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation Type Journal Article
  Year 1997 Publication Desalination Abbreviated Journal  
  Volume 113 Issue 2-3 Pages 277-281  
  Keywords mine water treatment  
  Abstract (up) A highly sulphated, hard water from a flooded iron mine was treated by nanofiltration for the production of drinking water (125 m(3)/h). This paper introduces the context and summarizes the configuration and operating conditions of the plant. The process performance in terms of product water quality and permeability during the first 2 years is presented and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation; Wos:000071218200023; Times Cited: 5; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17153 Serial 134  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: