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ABSTRACT: Collecting mining influenced water (MIW) quality data can result in incomplete data sets with missing values and
anomalies, making it challenging to use the data for optimizing mine water management. This work explores advanced statistical data
analysis approaches for addressing missing data interpolation and anomaly detection in MIW data sets. The study compares the
performance of five different interpolation techniques and four different anomaly detection techniques using supervised and
unsupervised machine learning algorithms developed using Python 3.8.16. The results of the study demonstrate that the radial basis
function, spline, and k-nearest-neighbors interpolation techniques, along with the predictive confidence interval level anomaly
approach based on gradient boosting regression trees, perform best for missing data interpolation and anomaly detection,
respectively. Thorough application of these advanced techniques can improve the accuracy and reliability of mine water quality data,
which is crucial for making conclusions on the safety of the environment, public health, and effective MIW management. This paper
highlights the importance of developing effective methods for addressing missing data and anomalies in MIW data sets, which can
ultimately lead to improved treatment plant optimization.
KEYWORDS: Supervised and Unsupervised Machine Learning Algorithms, Python Programming Language,
Mining Influenced Water Data, Missing Data Interpolation, Anomaly Detection

1. INTRODUCTION
Statistical data analysis plays a crucial role in the mining
industry, especially when it comes to managing mining
influenced water (MIW). First introduced by Schmiermund
and Drozd,1 the term MIW was defined by McLemore2 as any
water resulting from mining activities, regardless of its
characteristics, including but not limited to acid/rock mine
drainage (AMD/ARD). The data set for this study is based on
circumneutral mine water from an abandoned gold mine with
an average pH of 6.55 (based on proton activity) and an
electrical conductivity of 3474 μS/cm, mainly due to a sulfate
concentration of 2434 mg/L and an Fe concentration of 175
mg/L (Table 1). Mine water management is a complex and
challenging task that requires the collection and analysis of
large amounts of data from various sources.3,4 Therefore,
statistical data analysis is used to make sense of these data and

make informed decisions about how to manage MIW
effectively. In many cases, mine water data contain missing
data and anomalies due to several factors such as missed
sampling days or equipment malfunctioning. Missing data and
anomalies are the main factors contributing negatively in MIW
chemistry interpretations; thus, advanced statistical data
analysis approaches need to be applied. Data play a critical
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role in monitoring, control, optimization, maintenance and
research activities at mine water treatment plants.3,4 So,
missing data and anomalies can result in biasness and give
wrong interpretations which may lead to wrong plant
optimization decisions such as developing bias forecasting
models. Therefore, addressing missing data and anomalies in
mine water data is crucial for maintaining data quality and
ensuring that data can be relied on to make further treatment
plant optimization decisions.

Mine water management involves the collection, treatment,
and discharge of water that is encountered during mining
operations. This water can include groundwater, surface water,
and water that are used in the mining process.5−7 Managing
this water is essential to ensuring that it does not harm the
environment or human health. However, due to the complex
nature of mining operations, managing MIW requires
advanced statistical data analysis approaches as opposed to
the current methods (summary in Text S1 in the Supporting
Information). Mine water management involves dealing with a
wide range of environmental factors, including water quality,
geological context, hydrological characteristics, and operational
variables, making this a complex and multidimensional
problem. Current statistical methods used in mine water
management tend to focus on a single parameter, using linear
or quadratic interpolation to fill in missing data and focus on
the z-score method or visual detection of outliers or anomalies.
Compared to advanced statistical data analysis techniques,
these methods are therefore less effective in the treatment and
management of MIW due to their limited ability to capture
and process complex patterns and relationships in the data.8,9

This manuscript presents techniques that use all the data in a
given data set to uncover insights and patterns in the specific
parameter of interest. As a result, these insights can be used to
improve mine water management, predict mine water
chemistry, and provide effective, sustainable water manage-
ment.10 Consequently, this highlights the potential of advanced
statistical data analysis methods in addressing the environ-
mental challenges associated with mine water treatment and
management.

Collection or measurements of mine water data are
conducted at various times under different conditions, and in
most cases missing data occur due to challenges that are
referred to as the missingness mechanism.11−13 Mine water

data can also contain unexpected observations in its data set,
which are referred to as anomalies. When statistical data
analysis techniques are applied, missing data interpolation is
normally conducted in parallel with anomaly detection. These
steps are crucial and must be conducted thoroughly, especially
when the data need to be used to build models. Missing data
and anomalies can have serious consequences in mine water
management, e.g., missing data can lead to inaccurate
conclusions about mine water quality, while anomalies can
make it difficult to identify and respond to potential
environmental risks. Therefore, it is imperative to address
missing data and anomalies in MIW data to ensure that they
can be used to make informed decisions about mine water
management.

Exploratory data analysis is conducted on the data before
they can be used on the selected algorithms to detect
anomalies and interpolate the missing observations. This
method is conducted to understand the behavior of the data
and as a guidance to apply appropriate techniques such as the
probabilistic methods (e.g., ref 14) or numerical statistical
modeling (e.g., ref 10). This paper explores several advanced
numerical statistical methods for interpolating missing data,
such as k-nearest-neighbors (kNN) interpolation, radial basis
function (RBF) interpolation, spline interpolation, multivariate
adaptive regression splines (MARS), and artificial neural
network (ANN) interpolation. In addition, advanced anomaly
detection methods are explored, such as one-class support
vector machines (SVMs), isolation forest, long short-term
memory (LSTM) autoencoder-based anomaly detection, and
predictive confidence interval level (PCIL) approach with
regression models.

Although several authors have used the term “numerical
statistical models”, it has not yet been defined by any of
them.15−17 Numerical models were introduced in the 1970s
with computers or the digital revolution. They solved real-
world problems with mathematical equations describing the
relevant processes. A common feature of all of these
“mathematical” solutions is the use of numerical methods to
solve the governing equations in an iterative approach. Similar
to numerical models, modern statistical approaches require the
use of sophisticated algorithms and computations to deal with
large data sets consisting of multiple variables. Because
machine learning belongs to this group of leading-edge
approaches, these statistical methods can be termed “numerical
statistical models”.

Statistical data analysis approaches are used to make sense of
the large amounts of data that are collected during mine water
management and uncover insights that can be used to improve
operations. Additionally, these approaches allow mining houses
to make informed decisions about mine water management
and reduce the environmental effects of mining operations in
the context of integrated water resource management
(IWRM). With the increasing amount of data being generated
on a daily basis, the importance of these approaches will
continue to play a crucial role in mining operations. Therefore,
components that form a substantial part of these approaches,
such as data interpolation and anomaly detection, need to be
taken seriously, and their techniques must be advanced to
allow the improvement of data accuracy and reliability. The
goal of this paper is to present for the first time comprehensive
advanced statistical data analysis methods to interpolate
missing data and detect anomalies in the MIW data set.

Table 1. Mine Water Quality Data Set from Shaft No. 9 of
the Randfontein Gold Mine from 2016-03-07 to 2021-07-13
(Westrand Mine Water Pool)a

parameter n x̅ σ min max

acidity, mg/L CaCO3 1123 406 337 48 1484
alkalinity, mg/L CaCO3 1123 155 55 70 298
EC, mS/m 1123 347 47 187 497
Fe, mg/L 1111 175 158 14 668
Mn, mg/L 1111 28.0 7.0 10.0 45.2
pH 1123 6.5 0.3 5.8 9.4
SO4, mg/L 989 2436 303 1833 3184
temp, °C 1123 19.7 2.1 9.5 26.2
turbidity, NTU 1116 22 36 0.7 275

aDefinitions: n, number of measurements; x̅, average; σ, standard
deviation; min, minimum value; max, maximum value. pH average
calculated as −log10[∑Ci/n], where C is the proton activity (www.
wolkersdorfer.info/pH_en); measured values and units as reported by
the plant (from More and Wolkersdorfer10).
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2. METHODS
2.1. MIW Data. This study uses the historical data from the

Westrand mine water pool gathered between the years 2016
and 2021, i.e., all the explored techniques were tested with the
same data set. The full data set consists of nine parameters, i.e.
electrical conductivity (EC), alkalinity, acidity, Mn, Fe, SO4,
pH, turbidity, and temperature (Figure 1 and Table 1). It
contains the missing observations and was tested for
anomalies. Python programming language was used to develop
the missing data interpolation and anomaly detection
techniques.
2.2. Data Exploration. Statistical modeling depends on

the results of the statistical tests applied on the data set before
models can be built.18 Statistical tests applied on the data set
include stationary tests, normality tests, and data trans-
formation. For the stationarity of the data set, the augmented
Dickey Fuller (ADF) test was used, which resulted in p-values
of the parameters being greater than 0.05 (except for
temperature), meaning that the data set is nonstationary.
Numerical statistical models can be particularly useful in
analyzing nonstationary data, unlike the probabilistic models,
and thus this paper explored several numerical statistical
modeling techniques. Nonstationary data often contain trends
that may require modeling capabilities to capture and
understand the underlying dynamics. Numerical statistical
models can also help simulate and predict the behavior of
nonstationary systems by incorporating relevant factors and
variables (e.g., refs 19 and 20).

In identifying the data that has been sampled from a normal
distribution, Kolmogorov−Smirnov, Shapiro−Wilks, and An-
derson−Darling normality tests were conducted.21−23 The p-
values for the parameters were below 5% using the
Kolmogorov−Smirnov and Shapiro−Wilks tests, meaning
that the data do not follow a normal distribution. For the
same reason, data did not follow a normal distribution applied
with the Anderson−Darling test when the test statistics were
all above the critical values at α = 0.15, 0.10, 0.05, 0.025, and
0.01 (0.574, 0.654, 0.784, 0.915 and 1.088). The data set

showed a normal, bimodal, multimodal, and log-normal
distribution. The goal was to use normally distributed data
to build missing data interpolation and anomaly detection
models to avoid the random or unpredictable variations that
may be present in the data; therefore, the natural log-normal
transformation was used.

The indicator parameters at the Westrand mine water pool
are Fe and acidity. However, for this study, the main focus was
on the Fe parameter. Therefore, the data were compared using
the Pearson correlation coefficient (Figure S1) and data
distribution statistical charts (Figure 2). This was conducted to
select the parameters that have a good relationship with the Fe
parameter so they can be used as inputs for the models.
Therefore, from the statistical graphical charts, acidity,
alkalinity, pH, SO4, and Mn displayed a good relationship
with Fe and thus were used as inputs. However, some of the
algorithms used (e.g., splines and RBF) only require a single
parameter to perform computations. Therefore, these algo-
rithms were only modeled with the target output, Fe. This
approach is not entirely accurate, as the parameters in mine
water influence each other; thus, it is recommended that the
algorithms used for statistical data modeling must have both
inputs and the target output/s. Nonetheless, these algorithms
are included in this study, so they can be compared with
others.

3. RESULTS AND DISCUSSION
3.1. Long Short-Term Memory Autoencoder-Based

Anomaly Detection. A long short-term memory (LSTM)
autoencoder-based anomaly detection approach is a machine
learning model that uses a type of artificial neural network
(ANN) known as an autoencoder to detect anomalies in
complex data sets, i.e. the type of ANN used in this approach
consists of an encoder and a decoder submodel.24 The model
is trained on a complex data set, and the LSTM network is
used to learn the normal patterns and trends in the data. In the
LSTM model, input values are downscaled and reconstructed,
captured as a latent vector, and decoded. If the reconstruction

Figure 1. Westrand mine water pool data from 2016-03-07 to 2021-07-13, including possible anomalies and missing data.
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error is high, it indicates that the input is an anomaly and
deviates from the normal behavior learned by the model (e.g.,
ref 25). An LSTM autoencoder consists of five layers: input
sequence, encoder, latent vector, decoder, and reconstructed
sequence.24,26,27 This type of model can be useful for detecting
unusual patterns or events in mine water data and potentially
flagging them for further investigation. In this study, the LSTM
autoencoder-based anomaly detection model was built using
Tensorflow version 2.2.0 as the backend and Keras version
2.4.3 as the core model development module. It should be
noted that the latest versions of the aforementioned modules
do not work on this technique as it was developed for earlier
versions of Python (i.e., Python 3.7 was used for this method
instead of version 3.8).

The LSTM autoencoder structure used in this study
contained 16 memory units with 80% of the data being used
for the training set and 20% for testing and validation
purposes. This structure takes in the input data and creates a
compressed version of it. Input parameters were compressed
into a single feature vector, and for the output to regenerate a

dimension similar to the original input, the repeat vector layer
was added to convert the feature tensor from one-dimensional
to two-dimensional. Therefore, the final decoder output layer
provided the reconstructed input data. This LSTM autoen-
coder model was fitted over 30 epochs with a batch size of 32
and was further compiled using the adaptive moment
estimation (Adam) optimizer and mean absolute error
(MAE) for calculating the loss function (Figure S2A). After
the loss function in the training and testing sets was examined,
a suitable threshold value for identifying anomalies was
computed. Therefore, the reconstruction loss in training and
testing sets (Figure S2B,C) was computed to determine when
the observations of the parameters crossed the anomaly
threshold (Figure S2D,E). Finally, the model did not detect
any anomalies in the target output (Fe concentrations).
3.2. Predictive Confidence Interval Level with

Regression Models for Anomaly Detection. The
predictive confidence interval level (PCIL) is a process of
fitting a nonlinear regression model to the data with different
prediction bands to detect anomalies. In this approach, the

Figure 2. Transformed data distribution of parameters to be used in building data interpolation and anomaly detection models.
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Scikit-learn library version 1.2.1 was used to build a gradient
boosting regression tree model with three prediction bands: α
= 0.10, α = 0.50, and α = 0.90 (Figure S3). α = 0.10 and α =
0.90 represent the lower and upper bounds of the data, and
data that plotted below the lower band and above the upper
band were considered anomalies. For the midprediction, α was
set to 0.50 with the least-squares loss function. Therefore,
values plotted on the α = 0.50 prediction band can be used to
replace possible anomalies.

Gradient boosting regression tree model structure buildup
consisted of 100 trees, a maximum depth of 2, and a learning
rate of 0.05, and data were split into 20% of the test size. The
loss function of the gradient boosting model was changed to
quantiles with three prediction intervals α used. This kind of
configuration ensures that the model performs predictions that
correspond to percentiles.
3.3. One-Class Support Vector Machines for Anomaly

Detection. One-class support vector machine (SVM) is an
anomaly detection model that is unsupervised. In contrast to
the traditional supervised SVM, this model does not require
labeled data during training.28 Rather, it establishes the
boundary for normal data and considers anything outside of
this boundary to be an anomaly (e.g., refs 29 and 30). One-
class SVMs are useful for problems where only one class of
data is available for training and can be applied in a variety of
fields such as fraud detection, intrusion detection, water quality
analysis, and fault diagnosis.

One-class SVMs can be useful in detecting anomalies in
mine water data, and these models can be trained on a data set
of normal operating conditions for the mine water system and
can be used to identify any anomalous behavior in the system.
Anomalies may include variations in mine water quality, mine
water flow rates, or pressure that could indicate a potential
problem or failure in the system. When these anomalies are
identified early, maintenance and repair can be carried out
before more serious problems can occur.31,32 One-class SVM

can be a useful tool for mine operators to monitor the
conditions of the water systems and prevent costly downtime.

In building the one-class SVM model, Scikit-learn version
1.2.1 was used as the core library. Anomalies were detected in
the Fe data, and model inputs used were acidity, alkalinity, and
pH. A 3D anomaly visualization was taken into consideration
when selecting model inputs; thus, only three parameters
showing a strong relationship with Fe were considered. The
target column, Fe, has continuous numerical values, and the
one-class SVM works with binary data. Therefore, the
threshold values were defined to determine what values of
the anomaly column should be considered as “normal” and
“anomalies”. Lower and upper threshold values were
determined by using the quartiles, i.e. Q1 − 1.5(Q3 − Q1)
for the lower and Q3 + 1.5(Q3 − Q1) for the upper threshold.

For the model buildup, the test size was set to be 20%, and
the model was initialized using a ν value (a parameter that
controls the number of training points that are considered to
be support vectors) of 0.1. Furthermore, a kernel function
(which is used to transform the input data to a higher
dimensional space) of RBF was applied and a γ value (a
parameter used to control the width of the Gaussian normal
distribution used to compute the similarity between two points
in the transformed space) of 0.1 was used. In the SVM models,
ν, kernel and γ are the parameters used for configuration.33

The parameters can be changed to enhance the performance of
the model. Finally, the model only detected one anomaly (668
mg/L) (Figure 3), and this is strongly convincing, as it is the
largest value from the Fe data (Figure 1).
3.4. Isolation Forest for Anomaly Detection. Isolation

forest is an unsupervised machine learning algorithm that uses
a decision tree algorithm34,35 to identify anomalies by
separating them from the rest of the data.36 This is
accomplished by randomly selecting a feature and then
selecting a split value between the minimum and maximum
values of that feature. Anomalous data points will have shorter

Figure 3. Fe data plotted with its anomalies in relation to acidity, alkalinity, and pH as model inputs using the one-class SVM model. Normalized
data (natural logarithmic and standard scaler normalization) were used to develop the model.
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paths in the resulting trees due to this random partitioning,
making them stand out from the rest of the data (e.g., refs
36−38). Unlike typical anomaly detection methods, which
start by defining what is considered normal and then flagging
anything that falls outside of that definition, isolation forest
does not have a predefined notion of normal behavior. Instead,
it explicitly separates anomalous points from the rest of the
data set.

Isolation forest can be used for anomaly detection in the
mine water data. Since anomalies in mine water can be caused
by various factors such as changes in water quality, flow rates,
or pressures, isolation forest can be used to identify these
anomalous patterns based on their different characteristics
compared to normal operating conditions.

In building the isolation forest model, Scikit-learn version
1.2.1 was used as the main library. Anomalies are detected on
the Fe concentration, with acidity and pH being used as input
parameters. The model was compiled by using 100 decision
trees to build the forest, a contamination value of 0.01, and a
random state of 42, and the data were split into 80% training
size and 20% testing size. The distribution of anomaly scores
computed by the isolation forest model for the input data is
indicated by the anomaly score histogram (Figure S4A). An
anomaly score is a measure of how isolated a data point is, with
isolated points having a higher absolute score and nonisolated
points having a lower absolute score.39 Therefore, the
histogram shows how many data points have anomaly scores
above a threshold. This histogram is shown alongside a scatter
plot (Figure S4B) of the input data, with anomalies highlighted
in red. Thus, this allows for a visual comparison of the anomaly
scores with the actual data points and shows how the algorithm
is able to identify anomalies in the data.

Similar to the one-class SVM model, the isolation forest
model detected only one observation of Fe concentration as an
anomaly. According to the isolation forest model architecture,
this conclusion makes statistical sense, because the detected
anomalous observation is isolated from the rest of the
population (Fe concentration data). However, the visual
representation of the scatter plot implies that there are two
anomalies. Different model parameters were applied to see if
the model can detect other anomalies and supplement what
can be seen in the scatter plot. It should be noted that all of the
model architectures used still detected only one anomaly.
3.5. k-Nearest-Neighbors Interpolation. k-nearest-

neighbors (kNN) interpolation is a method of estimating
values for missing data points based on the values of the k
nearest neighbors. The k value in the kNN is the number of
nearest neighbors to consider for predicting the class label of a
sample. The idea is that the majority of the k nearest samples
to a given test sample belong to the same class, so the class
label of the test sample can be assigned accordingly.40,41 For
mine water data, kNN interpolation is hardly used due to the
complex nature of the data sets. However, this approach can be
used to accurately interpolate and predict the missing values
for mine water quality parameters such as pH, EC, and TDS.42

It can be applied by identifying the k closest data points to the
missing value based on some distance metric, such as
Euclidean distance, and then averaging the values of those k
points to estimate the missing value (e.g., ref 43). kNN
interpolation is advantageous as it is relatively simple to
implement, analyzes data robustly, and can provide good
results when the data have a high degree of spatial
autocorrelation. However, in certain cases, it can be sensitive

to the choice of k, and the results may be affected by anomalies
in the data; thus, robust ways to detect anomalies are
introduced in this study. In addition, it is imperative to note
that in mine water data, it may be necessary to consider
additional factors such as the type of mining operation and the
geological setting of the area to ensure that the interpolated
values are accurate.
kNN interpolation method was built by using the

“KNeiborsRegressor” class from the Scikit-learn library version
1.2.1. The model was built using a test size of 20%, and a
random state of 10 and further compiled with 5 nearest
neighbors, a “distance” weight parameter which uses the
inverse of the distance as the weight of each neighbor, and a
“Minkowski” metric, which uses the Minkowski distance as the
metric to determine the nearest neighbors. Finally, the model
performed relatively well with a mean absolute error (MAE) of
0.06957, a mean squared error (MSE) of 0.01002, and an r2

value of 0.9968 between the measured and predicted/
interpolated concentrations (Figure S5). Therefore, the trained
model was used to predict and interpolate the Fe
concentration.
3.6. Radial Basis Function Interpolation. Radial basis

function (RBF) interpolation is a technique used for
approximating a multivariate function from a set of scattered
data points. This interpolation approach makes use of a radial
basis function such as linear, cubic, multiquadric, or Gaussian
as a weighting function to give a value to a point in space based
on its distance from known data points.44,45 The coefficients of
RBF are determined by the values of the function at the known
points; therefore, this can further be applied to determine the
value of the function at any other point. In the RBF method,
the interpolating function is defined as a linear combination of
RBFs centered at the data points. RBF can be used to estimate
unknown parameter values in mine water management based
on a limited number of available measurement data, making it
a useful interpolation technique. The RBF technique was
developed using the SciPy.interpolate class from the SciPy
library version 1.9.3. There are several functions that can be
used to perform interpolation using the RBF technique, and
the suitable one for this study was the linear function (Figure
S6).
3.7. Spline Interpolation. Spline interpolation is a

technique for estimating the missing observations of a function
between known points.46,47 In MIW data, spline interpolation
can be used to estimate the missing concentrations and values
of the mine water physicochemical parameters based on a
small number of available measurement data. This approach
works by constructing a piecewise polynomial function that
goes through the data points and is continuous and smooth at
the control points. Control points are the points at which the
polynomial functions are joined and used to determine the
shape of a spline curve.48,49 A interpolate.CubicSpline class
from the SciPy version 1.9.3 library was used to perform spline
interpolation, and this resulted in piecewise polynomial
functions being formed and interpolation taking place (Figure
4).
3.8. Multivariate Adaptive Regression Spline Inter-

polation. Multivariate adaptive regression splines (MARS) is
a type of nonparametric regression technique that is often used
to model complex relationships between multiple input
variables and a single target output.50,51 This approach is
useful in interpolating the missing mine water data, as it
incorporates the relationships between all of the available
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parameters to interpolate a single target output. The MARS
technique works by constructing a piecewise linear function
that is adapted to the data through recursive splitting of the
input space into regions, where the linear function within each
region is defined by a set of basis functions.50 Therefore, the
resulting model can then be used to predict the concentration
or values of the target output based on the values of the
measurement variables. MARS can provide a powerful and
flexible way to model complex relationships in mine water data.

MARS model was built using the pyGAM library. pyGAM is
a flexible and user-friendly library that makes it easy to fit and
predict with generalized additive models (GAMs). A test size
of 20% and 10 splines were utilized to fit the model, and MAE
and MSE values of 0.07067 and 0.00988 were produced,
implying that the model performed relatively well on the fitted
data. Statistical analysis results were relied on and used Fe as
the target output, and the model finally predicted and
interpolated Fe concentrations (Figure S7).
3.9. Neural Network Interpolation. Similar to MARS,

neural networks are also used to model the relationship
between a set of input variables and a single output variable.
Neural network interpolation is a supervised regression
machine learning technique that works by constructing a
multilayer feedforward neural network that maps the input
variables to the output variable.52,53 This network is trained on
the available data, and the resulting model can be used to
estimate the target output based on the values of the input
variables (e.g., refs 54−56). Neural network interpolation often
gives good results, especially when the data set is nonlinear
such as MIW data. A neural network structure consists of
neuron that forms layers, and the layers are connected by the
weights that are associated with the bias. The network has an
input layer in which raw data are initially introduced into the
network, hidden layer(s) to perform the network’s computa-
tions, and an output layer in which the final prediction for the
network takes place.

Three core libraries, Scikit-learn” version 1.2.1, TensorFlow
version 2.10.0, and Keras version 2.10.0, were used to build the
neural network interpolation model. From the statistical
analysis results, Fe was used as the target output, while
alkalinity, acidity, SO4, pH, and Mn were used as model inputs.
The neural network structure consisted of two hidden layers
with four and eight neurons, and a rectified linear (ReLU)
activation function was used for both the hidden and output
layers. A test size of 20% was used for the model and was

compiled using the mean squared error (MSE) loss function
and the adaptive moment estimation (Adam) optimizer.
Furthermore, the model was fitted using 50 epochs and a
batch size of 32 and yielded very low error values (training
MSE, 0.1254; test MSE, 0.1239; validation MSE, 0.1239;
Figure S8A), indicating that the model performed well on the
supplied data. Therefore, the model was used for prediction/
interpolation, and the results were compared with the
measured data (Figure S8B).

4. MODEL COMPARISON
4.1. Anomaly Detection Models. The anomaly detection

techniques applied in this study identified about 0.5% of the
total samples as anomalies (Figure 5). This value is close to

that of Wolkersdorfer,57 who identified that 0.6% of his 8611
individual measurements of various parameters in MIW can be
classified as outliers. The ground truth regarding the detected
anomalies in the data set is unknown, making it impossible to
determine the exact nature of each individually measured data
point. Furthermore, the definition of anomalies can vary based
on subjective judgments and statistical thresholds (see
discussion in ref 57). Therefore, it is important to carefully
consider and understand that anomaly detection methods
depend on specific assumptions and thresholds defined by the
researcher and methods applied.

From the results obtained, the PCIL approach using a
gradient boosting regression tree model appears to be the most
effective model for detecting anomalies, as it was able to detect
five anomalies from the Fe concentration. On the other hand,
the LSTM autoencoder did not detect any anomalies. This
may be because LSTM autoencoders are more suitable for
detecting anomalies in temporal data with a clear pattern or
trend,25,58 whereas the data used in this study do not have a
clear pattern or trend that the LSTM model could detect. The
one-class SVM and isolation forest models both detected only
one anomaly, which suggests that they may not have been as
effective as the PCIL approach in detecting anomalies in the
data. However, it is worth noting that the performance of these
models can be highly dependent on the anomaly threshold set,
specific parameters, and settings used during training and they
may perform differently with different data sets.

Figure 4. Spline interpolation for Fe concentrations of the Westrand
mine water pool data from 2016 to 2021.

Figure 5. Comparison of the three anomaly detection models used to
detect anomalies in Fe concentrations of the Westrand mine water
pool from 2016 to 2021. The LSTM autoencoder is not included
because it did not detect any anomalies.
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It is worth noting that selecting anomaly threshold values
such as in the autoencoder and one-class SVM models has
great potential to influence how the algorithms perform.
Choosing an anomaly threshold value involves determining the
point at which data points are classified as anomalies or
normal. Various techniques can be applied to set the threshold
values, including the statistical methodological approaches,
receiver operating characteristic curve, and precision-recall
curve, and the threshold can also be set by using the
knowledge and experience of working with the data set. This
study used the subject matter knowledge in the autoencoder
model and the statistical methodological approach in the one-
class SVM model. The statistical method approach involves
using measures such as mean, standard deviation, and
percentiles to define a threshold based on deviations from
the normal data distribution. Therefore, the results obtained
are accurate only for the methods used, and different results
can be obtained by using different approaches of selecting the
anomaly threshold.
4.2. Missing Data Interpolation Models. Interpolation

is a technique used to estimate data points based on the
available data. In the context of mine water management,
accurate and reliable estimates of concentrations are essential
for the decision-making process. For this study, statistical
methods were applied to select the target output to be used in
the models. Therefore, the missing concentrations of Fe were
then predicted and interpolated by using various techniques.
The ANN, kNN, MARS, RBF and spline techniques were
applied to fill in the gaps in Fe concentrations. In addition, the
performance of each method was evaluated based on its ability
to accurately predict missing data. Real (measured) data was
used to train the algorithms, and the resulting model was used
to predict the missing, new data in the gaps. The predicted new
data were then compared to the real data to calculate the
values of the evaluation metrics. Therefore, the results
indicated that spline, RBF, and kNN performed relatively
well, with MARS performing slightly well, while ANN did not
perform well, as its predictions and interpolations are slightly
far away from the original data (Figure 6).

5. CONCLUSIONS
This study presented advanced statistical data analysis
approaches for missing data interpolation and anomaly
detection in an MIW data set. Five interpolation techniques

(kNN, RBF, spline, MARS, and ANN) and four anomaly
detection techniques (one-class SVMs, isolation forest, LSTM
autoencoder-based anomaly detection, and PCIL approach
using gradient boosting regression tree model) were evaluated
and compared for their accuracy and effectiveness. The results
of the study show that the RBF, spline, and kNN interpolation
techniques outperformed other interpolation techniques for
missing data estimation, while the PCIL approach technique
performed best for anomaly detection. These findings
demonstrate the importance of using advanced statistical
data analysis approaches for addressing missing data and
anomalies in MIW data set.

The implications of this study are important for ensuring the
safety of the environment and public health in mining areas.
Accurate and reliable data analysis is essential for identifying
potential risks and developing effective mitigation strategies.
The advanced statistical data analysis approaches presented in
this study provide a powerful tool for improving the accuracy
and reliability of water quality data analysis in mine water
treatment plants.

Future research can further improve the performance of the
interpolation and anomaly detection techniques by exploring
alternative algorithms and parameter optimization. Addition-
ally, software embedded with the explored algorithms would be
beneficial and advantageous to the industry so that non-
programmers can easily implement these techniques. The
application of these techniques can be extended to other
environmental data sets beyond MIW, such as wastewater data,
air quality, soil quality, and weather data. In conclusion, the
study contributes to the advancement of statistical data analysis
approaches for environmental data analysis, highlighting the
potential of these techniques to support decision-making
processes and promote sustainable resource management.
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