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A B S T R A C T   

Various techniques have been researched and introduced in water treatment plants to optimise 
treatment and management processes. This paper presents a solution that can help treatment 
plants to work more effectively and reach their mine water management goals. Using Python 
3.7.1 programming language within an Anaconda 4.11.0 platform, neural networks and regres-
sion tree algorithms were compared to find the best performing model after the data had un-
dergone robust data pre-processing and exploratory data analysis statistical techniques. The main 
aim was to use this best performing model to forecast mining influenced water (MIW) parameters. 
This approach will help the treatment plant operators in knowing the future MIW chemistry, and 
they can eventually plan ahead of time what chemicals and methods to use to treat and manage 
polluted MIW. Westrand mine pool water near Randfontein, South Africa is used as a case study, 
in which historical data (2016–2021) from shaft N◦ 9 is used to train and test the algorithms. 
These algorithms included the artificial neural network (ANN), deep neural network (DNN), 
gradient boosting and random forest regression trees, while the multivariate long short-term 
memory (LSTM) was used to generate new data for the best performing algorithm. Different 
data pre-processing approaches were explored, including data interpolation and anomaly 
detection. These processes were carried out to highlight the most important part of completing a 
machine learning related project, which is data analytics. Finally, the random forest regression 
tree algorithm showed the overall best performance and was used to forecast Fe and acidity 
concentrations of MIW for 60 days. It could be shown that artificial intelligence techniques are 
capable to optimise and forecast mine water treatment plant parameters, and it is imperative to 
perform robust statistical analysis on the data before attempting to build forecasting models.   

1. Introduction and background 

Mining influenced water (MIW), especially acid mine drainage (AMD), but also circum-neutral and alkaline drainage, is a threat to 
the former mining areas in South Africa and worldwide [1]. It is therefore imperative that any mine water is treated before it can enter 
local water courses. Due to the temporal changes and the longevity of the mine water quality [2,3], mine or treatment plant operators 
have to make provisions for the variability in the discharge qualities. If these changes can be quantified before they are about to occur, 
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chemical stock, electricity or employee planning could be optimised to avoid over or under stocking or having too many personnel on 
site. Several mining companies are introducing advanced digital technologies in the treatment plants to treat and manage MIW 
effectively [4]. This study, therefore, applied machine learning (ML) techniques to forecast MIW parameters for 60 days using Fe and 
acidity exemplified by the former Randfontein Estates gold mine located in Randfontein, South Africa (Westrand mine pool). This kind 
of approach has never been tested on mine water dataset except for when More and Wolkersdorfer [5] only used regression tree models 
to forecast pH and EC values of mine water. The approach in this study is different due to the robust statistical techniques applied and 
multiple algorithms compared before deciding on the final model to use for forecasting analysis. Algorithms tested include the 
multi-layer perceptron (artificial) neural network (ANN), deep neural network (DNN), random forest and gradient boosting tree. 
Multivariate long short-term memory (LSTM) was used to generate new data for the best performing algorithm to forecast acidity and 
Fe of MIW. In the Westrand mine pool, MIW is pumped from shafts N◦ 8 and N◦ 9 to the treatment plant, and the main aim here is to 
forecast the mine water chemistry so that the plant operators can be prepared for changing water qualities ahead of time for optimal 
chemical dosing. 

Usually, the traditional models fail to use all available parameters to forecast other parameters. These traditional models, such as 
auto regressive integrated moving average (ARIMA) or Box-Jenkins, assume that time series data are linear processes [6,7]. Addi-
tionally, they forecast data of an individual time series by analysing the underlying data structure and using its patterns and trends. In 
many cases, real world scenarios are nonlinear [8], and thus, relying only on the traditional time series forecasting techniques is highly 
disadvantageous and would be inappropriate for time series datasets of MIW. Mine water parameters produce a nonlinear dataset, thus 
ML models were applied in this study. ML models such as the neural networks have gained overwhelming attention over the past years 
in nonlinear time series forecasting [e.g. Refs. [9,10]] and have yielded positive results. These techniques, including regression tree 
models, use the whole dataset’s structure and analyse the relationships between the data of the parameters in the whole dataset to 
forecast the future patterns and trends. 

In addition to applying ML models, thorough data pre-processing and exploratory data analysis need to be practiced to produce 
models that can forecast the data with accuracy and precision. Missing data and anomalies are frequently encountered while collecting 

Fig. 1. Recommended techniques for each missing data type [modified and supplemented after [15]].  
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MIW data, as this was the case with the data used for this study. Missing data compromise the statistical power of the study, while 
anomalies result in over-fitting or under-fitting of the models. Therefore, it is advantageous to apply suitable data interpolation and 
anomaly detection techniques on time series data before attempting to build forecasting models. Missing data in time series can occur 
due to several problems known as the missingness mechanism. The missingness mechanism can be in three different forms: missing 
completely at random (MCAR), missing at random (MAR) or missing not at random (MNAR) [Fig. 1; [11–13]]. A variable is MCAR if 
the probability of missingness is the same for all units, and it is MAR if the probability of missingness is depending only on available 
information. Additionally, missing data in MNAR are incomplete data that cannot be verified or predicted. 

In this study, the data used consists of missing data that cannot be ignored, because doing so would lead to biased results, meaning 
that the type of missing data are MNAR. Therefore, numerical statistical modelling was investigated and suitable techniques used to 
interpolate the missing data. Approaches investigated include the basis-spline (B-Spline) curves, non-uniform rational basis spline 
(NURBS) curves and wavelet transform; however, only B-Splines were suitable to be applied in this study. Numerical modelling as-
sumes that the time series data corresponds to an unknown function and the main aim is to fit the function and use it to interpolate the 
missing values [14]. In case of anomalies, statistical profiling and predictive confidence level (used for the data in this study) ap-
proaches were investigated in this study. Statistical profiling involves calculating measures of central tendency of the historical data 
and examining them, while the predictive confidence level approach uses the historical data to build a predictive model to get the 
overall trend, seasonality or cyclic pattern of the data, and ultimately detect the anomalies. 

2. Study design 

2.1. Introduction 

Machine learning models in this study were developed in a three-step process, i.e. initial forecasting using the multivariate LSTM 
model, choosing the best performing model by comparing the ANN, DNN, random forest and gradient boosting tree models and finally 
performing the final forecasting analysis (Fig. 2). An LSTM model was used to forecast the values of alkalinity, pH and SO4, and these 
forecasted values were supplied to the trained and tested best performing model to give the final concentrations of Fe and acidity for 60 
days. 

2.2. Multivariate long short-term memory (LSTM) 

Multivariate Long Short-Term Memory systems (LSTMs) are a special type of recurrent neural network (RNN) and are mostly 
favoured because of the disadvantages that normal RNNs have. Normal RNNs have no long-term memory, cannot use information from 
distant past, and cannot learn patterns with long dependencies [16]. A way to overcome these issues is by introducing an LSTM which 
has memory cells that enable them to learn long-term patterns [16,17]. LSTM’s default behaviour is remembering patterns and trends 
for a long period. They have a chain-like structure, similar to RNNs. However, the structure of the repeating module differs: for RNN, 
the repeating module is made up of a simple structure, such as a single tanh (hyperbolic tangent) layer, while LSTM’s repeating module 
consist of four neural network layers interacting in a unique way (Fig. 3). 

Fig. 2. Machine learning mechanism for the Westrand mine pool water treatment plant data.  
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2.3. Artificial neural network (ANN) and deep neural network (DNN) 

Artificial Neural Networks (ANN) and Deep Neural Networks (DNN) are from the same group of algorithms, but only differ by the 
number of hidden layers. A typical neural network is made up of the input layer, hidden layer and output layer (Fig. 4), and if the 
network has one hidden layer then it is an ANN structure. A neural network that consists of two or more hidden layers is referred to as a 
DNN model. A fully connected layer in the neural network structure is practically composed of the weights and the bias of each neuron, 
and the input size controls the number of weights. Each neuron has its own activation function [6,9,18–20]. An input layer introduces 
values into the network, and it has no activation function. Hidden layer(s) perform the network’s computations. Furthermore, the 
number of neurons in the input layer depends on the parameters that will be used in the network as inputs. An output layer makes final 
prediction for the network, and its neurons depend on the parameters that need to be predicted, while hidden layers can have any 
number of neurons stacked together. Hidden and output layer neurons have an activation function such as the sigmoid, rectified linear 
unit (ReLU) or softmax (normalised exponential function). 

2.4. Regression tree algorithms 

Regression trees are one of the key algorithms used in complex structures such as mine water dataset. They are useful when the data 
has no obvious linear relationship between the input and output parameters. In this study, random forest and gradient boosting 
regression trees were used. Decision trees make the foundation of both the algorithms. Regression tree algorithms have a tree-like 
structure which consists of root node, branches and leaf nodes [Fig. 5; [22,23]]. A random forest algorithm aims to reduce the 
variance in complex trees while gradient boosting aims to decrease the bias. 

3. A review of selected data interpolation and anomaly detection techniques for time series 

3.1. Basis spline (B-spline): data interpolation 

Basis Spline (B-Spline) curves are an interpolation technique in which the order chosen for the curve is independent of the control 

Fig. 3. Mechanism structure for RNN (above) and LSTM cells (below). Inputs are labelled as Xt: current input, Ct-1: memory from last LSTM unit and 
ht-1: output of last LSTM unit. Outputs are labelled as Ct: new updated memory and ht: current output. Nonlinearities are labelled as σ: sigmoid layer 
and tanh: tanh layer. Vector operations are labelled as X: scaling of information and 

∑
: adding information; b: bias. 
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points [24,25]. Control points are used to determine the shape of a spline curve. B-Splines are unique and more advantageous when 
compared to other interpolation or approximation techniques such as splines and the Bezier curves [26]. Splines follow the general 
shape of the curve, while the Bezier curve generally follows the shape of a defining polygon [24,26,27]. In the B-Spline curve, the 
independency of the order of the curve over the local control points makes it a reliable interpolation technique. Thus, the B-Spline 
curve provides the local control through control points in every segment of the curve [25,28]. For example, a curve may have 40, 60 or 
100 points and there will still be freedom to fix the curve to any shape, e.g. quadratic, cubic or higher order. 

As can be seen, a B-Spline curve is not a single curve, but it is made up of a number of curve segments and all have the same 
continuity requirement depending on the order of the curve [24,29]. B-Splines can be applied for the open and closed curves, and 
changing any of the control points changes only a specific segment of the curve (Fig. 6), while in techniques like Bezier, the whole 
curve changes. Therefore, applying B-Spline interpolation in time series ensures that the missing data are interpolated within the 
population space and are not distorted or isolated. 

Fig. 4. A neural network’s mechanism [modified after [21]].  

Fig. 5. Components of regression tree structure.  
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3.2. Non-uniform rational basis spline (NURBS): data interpolation 

Non-uniform rational basis spline (NURBS) curves are a modification or rational version of B-Spline curves. Their advantage is that 
they can create smoother surfaces with fewer control points [30]. NURBS are mathematical representations of complex structures, be it 
two- or three-dimensional objects, e.g. cars, buildings, cones or simple curves. They are the computer graphics design industry 
standard when it comes to creating or interpolating complex objects [30–32]. Generally, they work exceptionally well in 
three-dimensional modelling, enabling the designer to easily manipulate control points and the contours’ smoothness. The 
non-uniform in NURBS refers to the idea that some segments or sections of a defined shape can be easily manipulated relative to other 
sections of the overall shape with control points being associated with weights (positive numbers). When these control points all have 
the same weight, the curve is called non-rational [28,31,33] and the rationality of NURBS means that the curves have the possibility of 
being rational, i.e. NURBS have the ability to give more weight to the control points in the overall curve shape. 

3.3. Wavelet transform: data interpolation 

Wavelet transform is a technique derived from the Fourier Transform (FT) and Short-Time Fourier Transform (STFT). Limitations 
that arise from the FT and STFT techniques gave birth to the wavelet transform [24,34]. The FT provides frequency information of a 
signal that represents frequencies and their magnitude. However, it does not tell when in time these frequency components exist [35, 
36]. Therefore, it is ideal for signals that do not change with time, i.e. signals that have a constant frequency throughout. Consequently, 
FT’s disadvantage is that it lacks capability to provide frequency information for a localised signal region in time. STFT was therefore 
developed to overcome the poor time resolution of the FT. Thus, STFT explains the time frequency representation of the signal and it 
assumes that a certain portion of the non-stationary signal is stationary [37,38]. 

The main limitation of STFT is that high frequency components appear as short bursts, thus needing higher time resolution [39,40]. 

Fig. 6. B-Spline curve behaviour when changing the control point position. Changing the position of control point P1 only changed segment 1, while 
segment 2 remained intact. 
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So, the wavelet transform improves on this shortfall, i.e. it results in analysing a signal into different frequencies at different reso-
lutions. Therefore, a wavelet is a rapidly decaying wave-like oscillation that has zero mean and exists for a finite duration [24,34,38, 
41–44]. Wavelet interpolation is a key factor in time series data due to the data’s stationarity properties. It is advantageous to apply 
this technique when the function is not smooth and is oscillating. 

PyWavelets, an open source wavelet transform software for Python, can be used to interpolate the missing values for oscillating 
data [45]. PyWavelets combines a simple high level interface with low level C and Cython performance. Python consists of different 
types of wavelet families, e.g. Haar, Morlet, Gaussian or Frequency B-Spline wavelets. Therefore, for accurate results, a wavelet family 
which fits best with the supplied data must be chosen. Each wavelet family is useful for a different purpose as they have different 
smoothness, shape and compactness. 

3.4. Statistical profiling approach: anomaly detection 

Statistical profiling is a simple and fast process that involves calculating measures of central tendency of the historical data and 
examining them [14]. This can be done by calculating the mean, median or the moving average of the data. Standard deviation can also 
be calculated and be used to set up the uppermost and lower bounds of the dataset as anomaly thresholds. This technique is known as 
the Z-score analysis in which the anomaly threshold is set by the three-standard deviations above and below the mean [e.g. Refs. [5, 
46]]. Values that are outside the three-standard deviation thresholds are considered strong anomalies (Fig. 7). Simple moving average 
can also be used for anomaly detection: it is applied to capture the pattern in time series. The difference between the actual and simple 
moving average can be computed to determine the tolerance band and identify anomalies. 

3.5. Predictive confidence level approach: anomaly detection 

Another way of detecting anomalies in time series data is by using the historical data to build a predictive model to get the overall 
trend, seasonality or cyclic pattern of the data. The model error can be analysed between the predicted and actual values, and use that 
to compute a confidence interval (Fig. 8). The values falling beyond the confidence band can be regarded as anomalies. For example, an 

Fig. 7. An example of anomaly detection using Z-score analysis.  

Fig. 8. An example of applying predictive confidence level bands to detect anomalies.  
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ARIMA model can be built and use the mean absolute percentage error (MAPE) to come up with a confidence band [47,48]. Other ML 
or deep learning based algorithms such as the LSTM or LSTM autoencoder produce accurate results for time series data, and thus can be 
used to find anomalies [49]. This technique is highly dependable on the accuracy and good performance of the predictive model. 
Therefore, the model must be tuned to ensure that it produces a low error. 

4. Dataset 

4.1. Background 

Sampling and monitoring of mine water is usually done on a regular basis to carefully examine its chemistry. This study uses the 

Table 1 
Mine water quality dataset from shaft N◦ 9 of the gold mine in Randfontein from 2016 to 03–07 to 2021-07-13; n: number of measurements, x: 
average, σ: standard deviation, min.: minimum value, max.: maximum value. pH average calculated as –log10[

∑
Ci/n], where C is the proton activity 

(https://www.wolkersdorfer.info/pH_en); measured values and units as reported by the plant.  

Parameter n x σ Min. Max. 

Acidity, mg/L CaCO3 1123 406 337 48 1484 
Alkalinity, mg/L CaCO3 1123 155 55 70 298 
EC, mS/m 1123 347 47 187 497 
Fe, mg/L 1111 175 158 14 668 
Mn, mg/L 1111 28.0 7.0 10.0 45.2 
pH, — 1123 6.5 0.3 5.8 9.4 
SO4, mg/L 989 2436 303 1833 3184 
Temperature, ◦C 1123 19.7 2.1 9.5 26.2 
Turbidity, NTU 1116 22 36 0.7 275  

Table 2 
ADF test application on the mine water dataset to test for stationarity. N◦ lags: number of lags, n: number of observations used for ADF regression and 
critical values calculation. Critical values at α = 0.01, 0.05 and 0.10 (− 3.437, − 2.864 and − 2.568).  

Parameter ADF Statistic p-value N◦ lags n 

Acidity − 1.474 0.546 6 981 
Alkalinity − 1.572 0.498 4 983 
EC − 1.953 0.307 18 969 
Fe − 1.580 0.493 11 976 
Mn − 1.548 0.510 6 981 
pH − 2.210 0.202 7 980 
SO4 − 1.440 0.563 8 979 
Temperature − 3.238 0.018 16 971 
Turbidity − 2.739 0.068 22 965  

Fig. 9. Temporal mine water data development of Shaft N◦ 9 in the Western Basin of the Witwatersrand mines from 2016 to 2021.  
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South African Westrand mine water treatment plant’s data gathered between 2016 and 03–07 and 2021-07-13. The data contains nine 
parameters, i.e. acidity, alkalinity, electrical conductivity (EC), Fe, Mn, pH, SO4, temperature and turbidity, which were used in the 
units applied by the plant operators. The parameters do not have an equal number of observations, i.e. some of the measurements are 
missing. The highest number of observations of an individual parameter is 1123 (Table 1). Robust data analytics approaches which 
included data interpolation and anomaly detection were conducted to prepare the data to be used in the machine learning models. 

4.2. Stationarity test 

Stationarity tests are critical as several statistical applications and models are computed based on its results. For example, nu-
merical models are often applied to time series data when it is non-stationary, and probabilistic models are sometimes useful and 
accurate when the dataset is stationary [14]. Data interpolation and anomaly detection approaches are guided by stationarity tests. 
Therefore, the Augmented Dickey Fuller (ADF) test was used on the dataset to test the stationarity of the time series (Table 2). A 
stationary dataset will have a p-value that is highly significant (<0.05). Additionally, scatter plots for the dataset were drawn to 
visualise the patterns, trends and seasonality, and identify any stationarity or non-stationarity properties of the data (Fig. 9). 

From the statistical results, the p-value obtained for temperature is less than 0.05. Therefore, the null hypothesis is rejected, i.e. 
temperature time series is stationary. However, the graphs show that temperature data are oscillating, a prominent seasonality can be 
observed in series. For the other parameters, the p-value for the time series is greater than 0.05. Therefore, the null hypothesis is 
accepted, i.e. the dataset for the parameters is non-stationary. Finally, the statistical results show that numerical modelling can be used 
to interpolate missing measurements and detect anomalies. 

4.3. Normality test 

Normality tests identify if the data has been sampled from a normal distribution. When data are plotted on a frequency distribution, 

Fig. 10. Histograms with fitted normal probability distribution function (PDF) curves. Normal PDF curves were drawn using the SciPy 1.7.0 module 
by utilising the mean and standard deviations of the data. 

Table 3 
Normality tests using the Kolmogorov-Smirnov, Shapiro-Wilk and Anderson-Darling tests; n: number of observations. Critical values for α = 0.15, 
0.10, 0.05, 0.025 and 0.01 (0.574, 0.654, 0.0784, 0.915 and 1.088) (Anderson-Darling).   

Kolmogorov-Smirnov Shapiro-Wilk Anderson-Darling 

Parameter n Test statistic p-value Test statistic p-value Test statistic 

Acidity 1123 1.00 0.000 0.819 0.000 89.1 
Alkalinity 1123 1.00 0.000 0.861 0.000 66.9 
EC 1123 1.00 0.000 0.946 0.000 27.9 
Fe 1111 1.00 0.000 0.815 0.000 89.2 
Mn 1111 1.00 0.000 0.967 0.000 10.4 
pH 1123 0.99 0.000 0.935 0.000 16.0 
SO4 995 1.00 0.000 0.942 0.000 18.5 
Temperature 1123 1.00 0.000 0.972 0.000 5.4 
Turbidity 1118 0.90 0.000 0.626 0.000 147.5  
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the normal distribution can be explained by a bell-curve shape with majority of the observations being around the mean value. From 
the graphs plotted, the data are log-normally, bi-modally and multi-modally distributed and only temperature shows a close to 
Gaussian distribution (Fig. 10). Mining influenced water data are continuous data, thus the normality test is a crucial process for 
deciding statistical methods and measures of central tendency to perform data analysis. Apart from graphical methods, there are 
several statistical techniques applied to test for normality of data. 

In this study, the SciPy 1.7.0 module was used to compute the Kolmogorov-Smirnov, Shapiro-Wilk, and Anderson-Darling 
normality tests (Table 3). Statistical tests conducted using the Kolmogorov-Smirnov and Shapiro-Wilk methods show p-values for 
the parameters to be below the 5% significance level, meaning that the data do not follow a normal distribution. Using the Anderson- 
Darling test, the test statistics are well above the critical values at α = 0.15, 0.10, 0.05, 0.025 and 0.01 (0.574, 0.654, 0.784, 0.915 and 
1.088), which also implies that the data do not follow a normal distribution. 

4.4. Data transformation 

As has been shown in the previous section, the dataset is not normally distributed. Several statistical methods, especially time-series 

Fig. 11. Q–Q plot (left) and histogram with a normal PDF curve (right) for the transformed turbidity data.  

Fig. 12. Gradient boosting regressors with prediction intervals of α = 0.10, 0.50 and 0.90 to detect anomalies in mining influenced water data. Only 
showing graphs for acidity, alkalinity, EC, Fe and Mn due to the data size. 
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forecasting techniques, are based on the assumption that the data are normally distributed. Thus, building forecasting models with un- 
transformed data often results in inaccurate forecasting results. Therefore, data transformation is taking data that are not normally 
distributed and transforming it to a close-to normal distribution [50–53]. Data transformation does not change the relationship of the 
variables for mathematical and statistical purposes. So, the procedure is a statistically necessary step towards building models that can 
forecast data with accuracy and precision. From the results, it can be seen that alkalinity, EC and Mn have a multi-modal distribution, 
and acidity, Fe, pH and SO4 show a bi-modal distribution. Temperature shows a close-to normal distribution and turbidity has a 
log-normal distribution. Therefore, only turbidity will be transformed. There are several ways to transform the data, such as 
log-normal, square-root, reciprocal, or Box-Cox transformation. In this study, a natural log-normal transformation was used: each 
variable of x was replaced by ln(x). Finally, quantile-quantile (Q–Q) and histogram graphs were plotted to test the normality of the 
transformed turbidity data (Fig. 11). In a Q–Q plot, for a normally distributed data, observations lie approximately on a straight line. 
Therefore, the graphs show that turbidity, after being transformed, is close-to a normal distribution, slightly showing a bi-modal 
distribution. 

5. Anomaly detection and data interpolation 

The dataset used for this study contains sample times with missing measurements resulting from equipment malfunctioning or 
because no sample was taken and has a small percentage of outliers identified by the statistical analysis conducted in the previous 
sections. There are several statistical methods to interpolate missing values and detect anomalies for time series data, some of which 
have been discussed earlier in this study. Predictive confidence level approach with gradient boosting regression tree algorithm was 
used to detect anomalies. In this approach, Python’s Scikit-Learn 0.24.2 library was used to build the gradient boosting regression 
model. This model was fitted on the data with three prediction bands of α = 0.10, 0.50 and 0.90 (Fig. 12). The α = 0.10 prediction band 
represents the lower bound of the data (real observations plotting below this band are considered possible anomalies), while the α =
0.90 prediction band represents the upper bound of the data (real observations plotting above this band are considered possible 
anomalies). For the mid-prediction, alpha was set to 0.50 and this predicts the median of the original data. Therefore, values plotting 
on the α = 0.50 prediction band were used to replace the possible anomalies. 

For the build-up of gradient boosting regression model, for each target output all other parameters were used as input variables, e.g. 
when acidity was set as the target output, alkalinity, EC, Fe, Mn, pH, SO4, temperature and turbidity were set as input variables. This 
model used 100 trees, a maximum tree depth of 2 and learning rate of 0.05 to perform predictions, and the data were split into training 
(80%) and testing (20%) sets. Gradient boosting model’s objective was to predict the values of the parameters that will possibly be used 
to build the forecasting models. There are several hidden features, some of which are not included in the data, which affect each 
parameter. Therefore, the uncertainty in the estimates was shown by predicting the lower (α = 0.10), middle (α = 0.50) and upper (α =
0.90) bands of the observations. The loss function of the gradient boosting model was changed to quantiles with selected prediction 
intervals (alphas). This configuration ensures that the model performs predictions which correspond to percentiles. 

Numerical analysis modelling was applied to interpolate the missing measurements. Numerical analysis assumes that time series 
data trend and pattern represent an unknown function [14]. The main task when applying this technique is to find a suitable function 
for the data so it can be used to interpolate the missing values. For reasons described above, B-Spline interpolation technique, using 
Python’s SciPy library, was used in this study. B-Spline interpolation is a form of interpolation where a continuous curve has various 
piecewise polynomials whose gradients match up at the measured data. Interpolation in this form takes place between two points that 

Fig. 13. Temporal mine water data development of Shaft N◦ 9 in the Western Basin of the Witwatersrand mines from 2016 to 2021 including 
interpolated data. 
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have missing values, i.e. a function is derived between the points and interpolation takes place. The polynomials are continuous up to 
their second derivative, and this process occurs for every paired-point that has missing values between them [24,54]. Finally, the 
interpolated values fitted well into the known population, and these interpolated values did not change the trends and patterns of the 
original data (Fig. 13). This implies that B-Spline interpolation is an accurate technique for non-stationary time series data. 

6. Modelling data 

Data analytics approaches were conducted to detect anomalies and interpolate the missing observations by robust statistical 
techniques described above, which provided a “clean” dataset that could be used for modelling. A correlation chart of nine parameters, 
all with 1955 observations, was computed using R 4.1.2 on RStudio 1.1.456 and this produced a chart with cross plots, distribution 
plots and Pearson correlation coefficients (r) (Fig. 14). Parameters of concern at the Westrand mine water treatment plant are acidity 
and Fe. Therefore, their relationships with other parameters were thoroughly examined. The statistical analyses show that both acidity 
and Fe have high correlations with alkalinity, EC, Mn, pH and SO4. Additionally, alkalinity, pH and SO4 have good relationships with 
acidity and Fe with r above 0.8. Therefore, alkalinity, pH and SO4 were used as input parameters for final forecasting, with acidity and 
Fe being the target outputs (Fig. 2). Turbidity and temperature were not used to build the forecasting models because they have poor 
relationships with the rest of the parameters, as displayed by the correlation coefficients. In total, seven parameters from the available 
nine were used to develop the models. 

7. Model development and evaluation 

All the models were trained and tested independently and only the best performing model was used in the project to create the final 
forecasting. Evaluation metrics used for the models include the mean squared error (MSE) and mean absolute error (MAE). By sta-
tistical definition, MSE is a measure of the average squared difference between predicted and actual values in a dataset, while MAE 
refers to the measure of the average absolute difference between predicted and actual values [55]. The forecasted concentrations and 
values of alkalinity, pH and SO4 by the LSTM model were supplied to the best performing model to forecast Fe and acidity 

Fig. 14. Correlation chart with the distribution of each parameter shown on the diagonal; on the bottom of the diagonal are the bivariate scatter 
plots with a fitted line; on the top of the diagonal are the values of the correlation with the significance levels shown as asterisks: ***p < 0.001, **p 
< 0.01, *p < 0.05; correlation coefficient font size is related to the relationship between the parameters – the stronger the relationship the bigger the 
font size and vice versa. 
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concentrations. For the LSTM model, three structures were developed with different numbers of the “lookback period” which explains 
the number of previous time-steps the model needs to use to predict the subsequent time-step, epochs, and validation split (Table 4). A 
single hidden layer multivariate LSTM model with 32 memory units based on the structure variations explained was compiled, and a 
ReLU activation function was used throughout. For all the structure variations, the models were fitted with a batch size of 32. The 
adaptive moment estimation (Adam) optimiser and MSE loss function were used in this model, and the low validation and training loss 
implies good model fitting on the new and training data (Table 5). 

Different techniques were applied to tune the hyper-parameters for the neural network models, including grid search optimisation 
technique, keras tuner and “trial and error” method. For the ANN model, the configuration that yielded better results was a model with 

Table 4 
Structure variations of the multivariate LSTM model.  

Model type Lookback period Epochs Validation split 

Structure variation 1 150 days 30 15% 
Structure variation 2 250 days 20 20% 
Structure variation 3 300 days 50 25%  

Table 5 
Performances (MSEs and MAEs) for the multivariate LSTM, ANN, DNN, random forest and gradient boosting models; RF: random forest, GB: gradient 
boosting.   

LSTM1 LSTM2 LSTM3 ANN DNN RF GB 

MSE MSE MSE MSE MAE MSE MAE MSE MAE MSE MAE 

Training 0.0532 0.0485 0.0481 0.0337 0.1308 0.0342 0.1313 0.0094 0.0620 0.0236 0.1039 
Testing 0.0851 0.0790 0.0592 0.0258 0.1190 0.0279 0.1234 0.0192 0.0798 0.0254 0.1050 
Comment Good performance. Data leaking. Not a good 

generalisation model. 
Data leaking. Not a good 
generalisation model. 

Good 
performance. 

Acceptable 
performance. 

Decision  Do not use. Do not use. Use. Do not use.  

Fig. 15. Forecasted concentrations of alkalinity (top), SO4 (bottom left) and pH values (bottom right) using multivariate LSTM model. Historical 
data was used from 2020 to 08-01 to allow better visualisation of the forecasting results. 
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input layers that consisted of three neurons of alkalinity, pH and SO4, while Fe and acidity were used in the output layer with a ReLU 
activation function. The model had one hidden layer of four neurons and a ReLU activation function. The DNN architecture consisted 
of two hidden layers, the first one with four neurons and another with two neurons, both with a ReLU activation function. Like ANN, 
input parameters were alkalinity, pH and SO4, with target outputs being Fe and acidity. Both the neural network models used a test size 
of 20%, and the models were compiled using the Adam optimiser. They were then fitted for 500 epochs with a batch size of 64. The 
model performances were tested using the MSE and MAE accuracy metrics (Table 5). A random forest regression tree model was built 
using 150 trees and a maximum depth of 8, with a test split of 20%. A gradient boosting regression tree model was compiled using 100 
trees, maximum depth of 5 and learning rate of 0.05, with a test size of 20%. Regression tree model performances were also evaluated 
using MSE and MAE (Table 5). 

8. Results and discussions 

Machine learning models developed in this study consisted of a multivariate LSTM model which was used to forecast alkalinity, pH 
and SO4 for 60 days using three different structure variations (Fig. 15). Furthermore, ANN, DNN, random forest and gradient boosting 
models were trained and tested using historical data. Random forest displayed the overall best performance and was used to forecast Fe 
and acidity concentrations for the same period as the LSTM model (Fig. 16). The multivariate LSTM forecasting has three different 
forecasted concentrations for alkalinity and SO4 as well as the pH values, which then resulted in the random forest model also fore-
casting three different concentrations for Fe and acidity. With random forest using alkalinity, pH and SO4 as input parameters, the 
forecasted concentrations and values by the LSTM model were fed to the trained random forest model. Therefore, the random forest 
model showed good performance and forecasted Fe and acidity concentrations with accuracy as the values fall within the population 
and follows the trend. In addition, the results suggest that ML models can be widely applied in mine water time series forecasting 
analysis. 

The models were evaluated using MSE and MAE, and in all occasions, the error was substantially low. However, the neural network 
models’ training loss was always greater than the validation loss, which meant that there is data leaking in the training process. Hyper- 
parameters were rigorously tuned using grid search, keras tuner and “trial and error” approach, but training loss continued to be 
slightly greater than the validation loss. Therefore, the final decision was that the models cannot be used for final forecasting analysis. 
Regression tree models displayed better performance, with random forest performing better than the gradient boosting. Thus, random 
forest was used to perform final forecasting analysis. Random forest showed superior performance because it is good at handling 
nonlinear relationships and interactions between variables. It also has built-in mechanisms to prevent overfitting, such as bagging and 
random feature selection, making it more reliable than other models in situations where overfitting is a concern. 

9. Comparing the measured and forecasted data for the final target outputs 

Forecasted concentrations of Fe and acidity using random forest model were compared with the measured data by calculating the 
forecasting error (Table 6). Measured data only contains 23 observations while the forecasting period was for 60 days. This is because 
sampling was not carried out daily for this period, thus the forecasting error was only calculated for the available measured data. 
Furthermore, cross plots of measured and forecasted data with robust regression lines were computed (Fig. 17). Computed plots and 
calculations show both the low coefficients of determinations (r2) and statistical significances. However, the calculated forecasting 
errors are relatively low with only four notable higher errors. The reason for such differences may be because of the sampling that was 
not conducted daily at the treatment plant. 

Fig. 16. Forecasted concentrations of Fe and acidity using the random forest model. Historical data was used from 2020 to 08-01 to allow better 
visualisation of the forecasting results. 
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Table 6 
Forecasting error analysis for the random forest model; Error is calculated as: |[(measured–forecasted)/(measured)] × 100%|.  

Measured Fe, mg/ 
L 

Forecast 1 |Error, 
%| 

Forecast 2 |Error, 
%| 

Forecast 3 |Error, 
%| 

Measured Acidity, mg/L 
CaCO3 

Forecast 1 |Error, 
%| 

Forecast 2 |Error, 
%| 

Forecast 3 |Error, 
%| 

309.6 300.0 3.1 284.9 8.0 288.9 6.7 726 692 4.7 661 8.9 671 7.6 
307.2 299.4 2.5 285.6 7.0 293.5 4.4 724 691 4.6 663 8.4 680 6.1 
306.4 286.9 6.4 288.9 5.7 312.4 2.0 724 667 7.8 671 7.3 709 2.1 
301.6 284.9 5.6 289.1 4.1 293.5 2.7 724 661 8.7 672 7.2 680 6.1 
304.0 288.7 5.0 293.5 3.4 311.4 2.4 728 671 7.8 680 6.6 708 2.8 
296.8 285.6 3.8 288.9 2.7 295.8 0.3 702 663 5.5 671 4.4 685 2.4 
263.2 284.9 8.2 288.9 9.8 293.5 11.5 662 661 0.1 671 1.4 680 2.7 
307.8 284.9 7.5 288.9 6.1 295.8 3.9 742 661 10.9 671 9.5 685 7.7 
304.0 286.9 5.6 288.9 5.0 295.8 2.7 708 667 5.7 671 5.2 685 3.3 
289.6 288.9 0.2 295.8 2.2 312.0 7.7 700 671 4.1 685 2.2 708 1.2 
280.8 288.9 2.9 293.5 4.5 295.8 5.4 700 671 4.1 680 2.8 685 2.2 
284.0 288.9 1.7 295.8 4.2 293.5 3.4 710 671 5.5 685 3.5 680 4.2 
287.2 293.5 2.2 310.2 8.0 293.5 2.2 710 680 4.2 706 0.6 680 4.2 
276.8 288.9 4.4 311.2 12.4 289.4 4.5 680 671 1.3 707 4.0 673 1.1 
278.4 288.9 3.8 310.1 11.4 288.7 3.7 684 671 1.9 706 3.2 671 1.8 
264.0 289.4 9.6 310.2 17.5 286.9 8.7 648 673 3.8 706 9.0 667 3.0 
256.0 284.2 11.0 287.9 12.5 299.4 16.9 610 660 8.1 670 9.8 690 13.2 
255.2 284.5 11.5 286.9 12.4 299.6 17.4 614 660 7.6 667 8.7 691 12.5 
248.0 284.2 14.6 287.9 16.1 299.4 20.7 600 660 10.0 670 11.7 690 15.1 
197.6 289.7 46.6 286.9 45.2 299.6 51.6 518 671 29.6 667 28.9 691 33.4 
198.4 299.4 50.9 286.9 44.6 299.6 51.0 530 691 30.3 667 25.9 691 30.4 
208.8 299.4 43.4 286.9 37.4 299.4 43.4 540 690 27.9 667 23.6 690 27.9 
208.8 290.4 39.1 286.9 37.4 299.4 43.4 536 673 25.5 667 24.5 690 28.8  
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10. Conclusions 

Forecasted concentrations of Fe and acidity by the random forest model fall within the historical data population and follow its 
recent trend and pattern. Therefore, the proposed methodology can be applied with certainty and confidence in forecasting mine water 
chemistry. Machine learning forecasting approach proved that the application can use data from several parameters to forecast other 
parameters, i.e. the model was developed in a way that the computer learns the trends, patterns and seasonality of input data to 
forecast the target outputs. Parameters in a time series are related to each other and influence the outcomes in each parameter’s 
dataset. Therefore, focusing only on one parameter to perform forecasting analysis would be inaccurate. Traditional statistical fore-
casting techniques such as ARIMA or Box-Jenkins, which forecast data of a parameter by learning its structure without relating it to 
other parameters, should be avoided in future applications. Thus, the forecasting technique proposed here will be a useful tool for 
water treatment plants because it will help in understanding changes in the mine water chemistry and volumes in advance. 

It can be concluded that forecasting mine water chemistry by applying ML models is a relevant contribution in and addition to mine 
water treatment plants. Comparing the neural network and regression tree models, the results show that random forest regression tree 
model performed better than the other models. Finally, the results obtained in this study indicate that regression tree algorithms are 
powerful and important mechanisms to model and forecast the complex mine water time series data or nonlinear systems. These 
approaches were able to analyse the hidden patterns, trends and seasonality among the historical mine water dataset in a much better 
and accurate approach compared to traditional time series analysis and statistical techniques. Lastly, the findings of this study have 
revealed that transforming time series data before using it for modelling is sometimes necessary to achieve more accurate forecasting 
results. 

CrediT author contribution statement 

Conceptualisation: Kagiso Samuel More; Funding acquisition: Christian Wolkersdorfer; Software: Kagiso Samuel More; Supervi-
sion: Christian Wolkersdorfer; Writing – original draft: Kagiso Samuel More; Writing – review and editing: Christian Wolkersdorfer. 

Funding 

This work is funded and supported by the National Research Foundation (NRF Grant UID 86948 and 121723) South Africa under 
the SARChI Chair for Mine Water Management, the Tshwane University of Technology (TUT). 

Statement 

All authors certify that they have participated sufficiently in the work to take public responsibility for the content, including 
participation in the concept, design, analysis, writing, or revision of the manuscript. 

Accountability 

We have authority over manuscript preparation and decisions to submit the manuscript for publication. 

Fig. 17. Cross plots with robust regression lines comparing the measured and forecasted Fe and acidity concentrations using the random forest 
model results; ***p < 0.001, **p < 0.01, *p < 0.05. 

K.S. More and C. Wolkersdorfer                                                                                                                                                                                    



Water Resources and Industry 29 (2023) 100209

17

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

Thanks to the National Research Foundation (NRF Grant UID 86948 and 121723) South Africa under the SARChI Chair for Mine 
Water Management and the Tshwane University of Technology (TUT) for funding this project and supporting this research. Additional 
thanks go to Council for Geosciences (CGS), South Africa and the relevant authorities and mine operator Sibanye Gold for providing us 
with historical mine water data. 

References 

[1] C. Wolkersdorfer, E. Mugova, V.S. Daga, P. Charvet, J.R.S. Vitule, Effects of mining on surface water – case studies, in: K. Irvine, D. Chapman, S. Warner (Eds.), 
The Encyclopedia of Inland Waters, second ed., Elsevier, Oxford, 2022, pp. 210–224, https://doi.org/10.1016/B978-0-12-819166-8.00036-0. 

[2] M. Paul, T. Metschies, M. Frenzel, J. Meyer, The mean hydraulic residence time and its use for assessing the longevity of mine water pollution from flooded 
underground mines, in: B. Merkel, M. Schipek (Eds.), The New Uranium Mining Boom, Springer Geology, Springer, Heidelberg, 2011, pp. 689–699, https://doi. 
org/10.1007/978-3-642-22122-4_79. 

[3] P. Younger, The longevity of mine water pollution – a basis for decision making, Sci. Total Environ. 194–195 (1997) 457–466, https://doi.org/10.1016/S0048- 
9697(96)05383-1. 

[4] K.S. More, C. Wolkersdorfer, N. Kang, A.E. Elmaghraby, Automated measurement systems in mine water management and mine workings — a review of 
potential methods, Water Resour. Ind. 24 (2020) 1–12, https://doi.org/10.1016/j.wri.2020.100136. 

[5] K.S. More, C. Wolkersdorfer, Predicting and Forecasting Mine Water Parameters Using a Hybrid Intelligent System, Water Resour. Manage., 2022, https://doi. 
org/10.1007/s11269-022-03177-2. 

[6] M. Khashei, M. Bijari, An artificial neural network (p,d,q) model for timeseries forecasting, Expert Syst. Appl. 37 (2010) 479–489, https://doi.org/10.1016/j. 
eswa.2009.05.044. 

[7] G.P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing 50 (2003) 159–175, https://doi.org/10.1016/S0925- 
2312(01)00702-0. 

[8] G. Zhang, B. Eddy Patuwo, M.Y. Hu, Forecasting with artificial neural networks: the state of the art, Int. J. Forecast. 14 (1998) 35–62, https://doi.org/10.1016/ 
S0169-2070(97)00044-7. 

[9] Y. Chen, B. Yang, J. Dong, A. Abraham, Time-series forecasting using flexible neural tree model, Inf. Sci. 174 (2005) 219–235, https://doi.org/10.1016/j. 
ins.2004.10.005. 

[10] A. Jain, A.M. Kumar, Hybrid neural network models for hydrologic time series forecasting, Appl, Soft Comput. 7 (2007) 585–592, https://doi.org/10.1016/j. 
asoc.2006.03.002. 

[11] S. Fielding, P.M. Fayers, C.R. Ramsay, Investigating the missing data mechanism in quality of life outcomes: a comparison of approaches, Health Qual. Life 
Outcome 7 (2009) 57, https://doi.org/10.1186/1477-7525-7-57. 

[12] T.D. Little, T.D. Jorgensen, K.M. Lang, E.W.G. Moore, On the joys of missing data, J. Pediatr. Psychol. 39 (2014) 151–162, https://doi.org/10.1093/jpepsy/ 
jst048. 

[13] D.A. Newman, Missing data: five practical guidelines, Organ. Res. Methods 17 (2014) 372–411, https://doi.org/10.1177/1094428114548590. 
[14] D. Wackerly, W. Mendenhall, R.L. Scheaffer, Mathematical Statistics with Applications, seventh ed., Thomson, Belmont, 2014. 
[15] R. Houari, A. Bounceur, A.K. Tari, M.T. Kecha, Handling missing data problems with sampling methods, in: International Conference on Advanced Networking 

Distributed Systems and Applications, Bejaia, Algeria, 2014, pp. 99–104, https://doi.org/10.1109/INDS.2014.25. Paper presented at the 2014. 
[16] N.K. Manaswi, Deep Learning with Applications Using python: Chatbots and Face, Object, and Speech Recognition with TensorFlow and Keras, Apress, Berkeley, 

2018, https://doi.org/10.1007/978-1-4842-3516-4. 
[17] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735. 
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