|
Gong, Z., Huang, J., & Jiang, H. (1996). Study of comprehensive retrieval utilization and the treatment of acid mine wastewater. Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology, 27(4), 432–435.
Abstract: Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.
|
|
|
Plumlee, G. S. (1995). Mine-drainage waters as potential economic resources. SEG Newsletter, 22, 6–7.
|
|
|
Stewart, D., Norman, T., Cordery-Cotter, S., Kleiner, R., Sweeney, E., & Nelson, J. D. (1997). Utilization of a ceramic membrane for acid mine drainage treatment. Tailings and Mine Waste '97, , 453–460.
Abstract: BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.
|
|