|
(2002). The BioSulphide Process to treat acid mine drainage and Anaconda tailings at Caribou Mine, New Brunswick (Vol. 2002-3).
|
|
|
Agency, U. S. E. P. (2006). Compost-free bioreactor treatment of acid rock drainage Leviathan Mine, California : innovative technology evaluation report, 2. Cincinnati, OH.: Research Laboratory, Office of Research and Development, United States Environmental Protection Agency.
|
|
|
Ahmed, S. M. (1994). Surface chemical methods of forming hardpan in pyrrhotite tailings and prevention of the acid mine drainage.
|
|
|
Al-Abed, S., Allen, D., Bates, E., & Reisman, D. (2002). Lime treatment lagoons technology for treating acid mine drainage from two mining sites.
|
|
|
Amacher, M. C., Brown, R. W., Kotuby-Amacher, J., & Willis, A. (1993). Adding sodium hydroxide to study metal removal in a stream affected by acid mine drainage. Research Paper, US Department of Agriculture, Forest Service, 465(17).
Abstract: Fisher Creek, a stream affected by acid mine drainage in the Beartooth Mountains of Montana, was studied to determine the extent to which copper (Cu) and zinc (Zn) would be removed from stream water when pH was increased by a pulse of sodium hydroxide (NaOH). Although the pH adjustment study indicated that precipitated Fe(OH) “SUB 3” (am) could rapidly remove Cu and Zn from a stream affected by acid mine drainage, the pH should be maintained in an optimal range (7 to 8.5) to maximize removal by adsorption. -from Authors
|
|