|
Goodman, G. T. (1974). Ecology and the problems of rehabilitating wastes from mineral extraction. Proceedings of the Royal Society of London, Series A Mathematical and Physical Sciences, 339(1618), 373–387.
Abstract: Environmental problems which may be associated with mineral extraction are: (a) the visual ugliness of open pits, waste tips, and working mess; (b) the nuisance of wind- and water-borne dusts; (c) the health hazards to wildlife, crops, livestock and man of locally increased environmental burdens of potentially toxic metals (e.g. Pb, Cd, As, Zn, Cu, Ni) derived from wind- and water-borne mine dusts and smelter smokes; (d) the safety hazards of surface subsidence and tip-slippage from deep-mining. All these disamenities can be cured or reduced by the reclamation process which involves a blend of socio-economic, legal, planning, civil engineering and biological expertise devoted to development planning, site purchase, land clearance, land forming, stabilization, drainage and revegetation of the affected site
|
|
|
Mitchell, P., & Wheaton, A. (1999). From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage. In D. E. Goldsack, N. Belzile, P. Yearwood, & G. J. Hall (Eds.), Sudbury '99; Mining and the environment II; Conference proceedings.
Abstract: Acid rock drainage remains the greatest environmental issue faced by the mining sector and as the new millennium approaches, low capital/operating cost treatments remain elusive. Therefore as part of an ongoing process to develop a leading edge, innovative and cost-effective approach, pilot trials were conducted by KEECO in collaboration with the New Bunker Hill Mining Company on a substantial and problematic metal-contaminated acid flow, emanating from underground workings at the Bunker Hill Mine, Idaho. The aims of the work were fourfold. First to assess the capacity of KEECO's unique Silica Micro Encapsulation (SME) reagents and associated dosing systems to cost-effectively decontaminate the acid flow to stringent standards set by the U.S. Environmental Protection Agency (USEPA), where alternative and standard technologies had failed. Second, to demonstrate that treatment using a compact system suitable for underground installation. Third, to demonstrate that the treatment sludge had enhanced chemical stability in absolute terms and relative to standard approaches. Fourth, to examine the potential for resource recovery via sequential precipitation. Although the focus to date has been the development of a cost-effective treatment technology, the latter aim was considered essential in light of the growing pressure on all industrial sectors to develop tools for environmentally sustainable economic growth and the growing demands of stakeholders for improved resource usage and recycling. Two phases of work were undertaken: a laboratory-based scoping exercise followed by installation within the mine workings of a compact reagent delivery/shear mixing unit capable of treating the full flow of 31 L s (super -1) . At a dose rate of 2.0 g L (super -1) (equivalent to a final treated water pH range of 7-9), the SME reagent KB-1 reduced metal concentrations to levels approaching the U.S. Drinking Water Standards, which no other treatment piloted at the site had achieved. Based on the USEPA's Toxicity Characteristic Leaching Procedure, the sludge arising from the treatment was classified as non-hazardous. Operating costs compared favourably with those of lime use, while estimated capital costs were considerably lower due to the compact nature of the reagent delivery system and the rapid settling characteristics of the treatment sediment. Resource recovery was attempted using a two-stage selective precipitation approach. The first stage involved pH adjustment to 5.5 (by addition of 1.5 g L (super -1) of KB-1) to produce a sludge enriched in aluminium, iron and manganese, with lesser amounts of arsenic, nickel, lead and zinc. Further KB-1 addition to a total of 2.1 g L (super -1) generated sludge enriched in zinc (33% by dry weight), demonstrating that resource recovery is theoretically feasible. Further work on downstream processing is required, although it is considered that the most likely route for zinc metal recovery will be high temperature/pressure due to the chemically inert nature of the zinc-rich sediment.
|
|