|
Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., & Puls, R. W. (2000). Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol, 45(1-2), 123–137.
Abstract: Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.
|
|
|
Herbert, R. B., Jr., Benner, S. G., & Blowes, D. W. (1998). Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation. In M. Herbert, & K. Kovar (Eds.), Groundwater Quality: Remediation and Protection (pp. 451–457). IAHS-AISH Publication, vol.250.
Abstract: A permeable reactive barrier was installed in August 1995 at the Nickel Rim Mine near Sudbury, Ontario, Canada, for the passive remediation of groundwater contaminated with acid mine drainage. The reactive component of the barrier consists of a mixture of municipal and leaf compost and wood chips: the organic material promotes bacterially-mediated sulphate reduction. Hydrogen sulphide, a product of sulphate reduction, may then complex with aqueous ferrous iron and precipitate as iron sulphide. This study presents the solid phase sulphur chemistry of the reactive wall after two years of operation, and discusses the formation and accumulation of iron sulphide minerals in the reactive material. The results from the solid-phase chemical analysis of core samples indicate that there is an accumulation of reduced inorganic sulphur in the reactive wall, with levels reaching 190 mu mol g (super -1) (dry weight) by July 1997.
|
|