|
Brown, M., Barley, B., & Wood, H. (2002). Minewater treatment; technology, application and policy. London: IWA Publishing.
|
|
|
Palmer, J. P. (1990). Reclamation and Decontamination of Metalliferous Mining Tailings. Int. J. Mine Water, 9(1-4), 223–235.
Abstract: Parts of Britain have large accumulations of metalliferous tailings derived from mining in the lath, 19th and 20th centuries. These tailings were never subject to land reclamation schemes at the time of mining and are situated very close to water courses. They cause considerable environmental damage in terms of contamination of soils, dust blow and pollution of water courses and groundwater. In some parts of the country mine drainage is a major part of river pollution. In recent years, particularly in Wales, efforts have been made to “clean up” these sites. This has involved using techniques to isolate and contain the spoil, diversion of water courses, and the installation of water treatment facilities and drainage and the establishment of a vegetation cover. Research is also being initiated to investigate ways of decontaminating these metalliferous spoils as an alternative to using covering systems to reclaim them.
|
|
|
Plant, J. (2006). Removal of base metals from mine waters using passive treatment processes involving autocatalytic oxidation and adsorption.
|
|
|
Wiseman, I. (2002). Constructed wetlands for minewater treatment. Bristol, England: Environment Agency.
|
|
|
Younger, P. L., Neal, C., House, W. A., Leeks, G. J. L., & Marker, A. H. (1997). The longevity of minewater pollution; a basis for decision-making U.K. fluxes to the North Sea; Land Ocean Interaction Study (LOIS); river basins research, the first two years. The Science of the Total Environment, 194-195, 457–466.
|
|