|
Fernandez Rubio, R. (2001). Un recurso valioso las aguas de mina. A valuable resource, mine waters. Industria y Mineria, 345, 14–22.
|
|
|
Ntengwe, F. W. (2005). An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia. Phys. Chem. Earth, 30(11-16 Spec. Iss.), 726–734.
Abstract: The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.
|
|
|
Schwartz, M. O., & Ploethner, D. (1999). From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia.. Hanover: Bundesanst. fuer Geowiss. und Rohstoffe.
|
|
|
Smit, J. P. (2000). Potable water from sulphate polluted mine sources. Mining Environmental Management, 8(6), 7–9.
|
|
|
Younger, P. L., & Cornford, C. (2002). Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice.
Abstract: Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.
|
|