toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Berthelot, D.; Haggis, M.; Payne, R.; McClarty, D.; Courtain, M. url  openurl
  Title Application of water covers, remote monitoring and data management systems to environmental management at uranium tailings sites in the Serpent River Watershed Type Journal Article
  Year (down) 1999 Publication CIM Bull. Abbreviated Journal  
  Volume 92 Issue 1033 Pages 70-77  
  Keywords mine water treatment Bergbau Industrieabfall Abwasserbehandlung Umweltschutz Umwelttechnik Umweltüberwachung Umweltverschmutzung Versatzgut Uranbergbau Managementsystem Aufbereitungsrückstand  
  Abstract Over forty years of uranium mining in the Elliot lake region of Ontario (1956-1996) has resulted in the production of over 300 million pounds of uranium. With the completion of mining activity Rio Algom limited and Denison Mines limited are utilizing progressive environmental technologies and management systems to reduce and manage the environmental risks associated with the 150 million tonnes of potentially acid-generating tailings in nine regional waste management areas. Water covers designed to reduce oxygen entry and, thereby, significantly inhibit acid generation, have been applied at six of the sites with the Quirke site serving as a demonstration site for the Mine Environmental Neutral Drainage program, All five of Rio Algom limited's effluent treatment plants are monitored and controlled from a central control station utilizing a Supervisory Control and Data Acquisition (SCADA) system based on “Fix Dmacs” technology Scheduling, auditing and reporting of plant operating and environmental monitoring programs for the entire watershed are controlled utilizing the Regional Environmental Information Management System (REIMS). Proper application of these technologies and management systems facilitates delivery of cost-effective environmental monitoring, care and maintenance programs at these sites and provides tools to demonstrate compliance with all environmental performance criteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sept.; Application of water covers, remote monitoring and data management systems to environmental management at uranium tailings sites in the Serpent River Watershed; Wos:000083074000018; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8475 Serial 131  
Permanent link to this record
 

 
Author Benner, S.G. url  openurl
  Title Geochemistry of a permeable reactive barrier for metals and acid mine drainage Type Journal Article
  Year (down) 1999 Publication Environmental Science & Technology Abbreviated Journal  
  Volume 33 Issue 16 Pages 2793-2799  
  Keywords mine water treatment  
  Abstract A permeable reactive barrier, designed to remove metals and generate alkalinity by promoting sulfate reduction and metal sulfide precipitation, was installed in August 1995 into an aquifer containing effluent from mine tailings. Passage of groundwater through the barrier results in striking improvement in water quality. Dramatic changes in concentrations of SO4 (decrease of 2000-3000 mg/L), Fe (decrease of 270-1300 mg/L), trace metals (e.g., Ni decreases 30 mg/L), and alkalinity (increase of (800-2700 mg/L) are observed. Populations of sulfate reducing bacteria are 10 000 times greater, and bacterial activity, as measured by dehydrogenase activity, is 10 rimes higher within the barrier compared to the up-gradient aquifer. Dissolved sulfide concentrations increase by 0.2-120 mg/ L, and the isotope S-34 is enriched relative to S-32 in the dissolved phase SO42- within the barrier. Water chemistry, coupled with geochemical speciation modeling, indicates the pore water in the barrier becomes supersaturated with respect to amorphous Fe sulfide. Solid phase analysis of the reactive mixture indicates the accumulation of Fe monosulfide precipitates. Shifts in the saturation states of carbonate, sulfate, and sulfide minerals and most of the observed changes in water chemistry in the barrier and down-gradient aquifer can be attributed, either directly or indirectly, to bacterially mediated sulfate reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Geochemistry of a permeable reactive barrier for metals and acid mine drainage; Wos:000082074500017; Times Cited: 57; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17115 Serial 132  
Permanent link to this record
 

 
Author Guay, R. url  openurl
  Title Effect of flooding of oxidized mine tailings on T-ferrooxidans and T-thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up Type Journal Article
  Year (down) 1999 Publication Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Pt B 1999 Abbreviated Journal  
  Volume 9 Issue Pages 635-643  
  Keywords mine water treatment  
  Abstract A pilot-scale study on the effect of flooding unoxidized and oxidized Cu/Zn tailings demonstrated the technical feasability of this technology to remediate a mining site where over 3 million tons of tailings were impounded. Full-scale flooding of the tailing pond with free running water was undertaken after the construction of an impervious dam; approximately 2 million m(3) of surface water at pH 7,4 completely covered the tailings after 16 months. The minimal water column over the tailings was established at 1,20 m and reached 4,5 m, depending on the site topography. Water and tailings samples were collected from 9 different locations from the surface of the man-made lake using a specially designed borer and were analyzed for pH, conductivity, iron- and sulfur-oxidizing bacteria activity and numbers as well as the sulfate reducing bacteria (SRB) population. We showed that over a four year period of flooding, the overall population of iron-oxidizers decreased considerably; their numbers drastically fell from 1 x 10(6) to 1 x 10(2) active cells per g of oxidized tailings while the SRBs increased from 10(1) to 10(5)/g. The pH of the influent, the reservoir and the effluent water remained fairly constant between 6,9 up to 7,4 over the entire period. During this time, interstitial water pH increased from 2,9 to 4,3 in flooded tailings where lime could not be incorporated in the first 20 cm of tailings; elsewhere, the pH of the tailings suspensions remained fairly constant around neutral values (pH 7,0). Dissolved oxygen was measured at fixed intervals and remained also constant between 6 and 7.5 mg/L while water temperatures fluctuated below freezing point to +20C respectively in winter and summer season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Effect of flooding of oxidized mine tailings on T-ferrooxidans and T-thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up; Isip:000086245100066; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17121 Serial 175  
Permanent link to this record
 

 
Author Boonstra, J. url  openurl
  Title Biological treatment of acid mine drainage Type Journal Article
  Year (down) 1999 Publication Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Pt B 1999 Abbreviated Journal  
  Volume 9 Issue Pages 559-567  
  Keywords mine water treatment  
  Abstract In this paper experience obtained with THIOPAQ technology treating Acid Mine Drainage is described. THIOPAQ Technology involves biological sulfate reduction technology and the removal of heavy metals as metal sulfide precipitates. The technology was developed by the PAQUES company, who have realised over 350 high rate biological treatment plants world wide. 5 plants specially designed for sulfate reduction are successfully operated on a continuous base (1998 status).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Biological treatment of acid mine drainage; Isip:000086245100058; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17117 Serial 176  
Permanent link to this record
 

 
Author Zaluski, M. url  openurl
  Title Design and construction of bioreactors with sulfate-reducing bacteria for acid mine drainage control Type Journal Article
  Year (down) 1999 Publication Phytoremediation and Innovative Strategies for Specialized Remedial Applications Abbreviated Journal  
  Volume Issue Pages 205-210  
  Keywords mine water treatment  
  Abstract At many abandoned mine sites in the Western U.S., conventional treatment of AMD is not feasible due to the of lack of power and limited site accessibility. Therefore, three bioreactors were built at an abandoned mine site in Montana to demonstrate feasibility of treating AMD using sulphate reducing bacteria (SRB) in a passive water treatment train. The SRB are capable of increasing the pH and reducing the load of dissolved metals in the effluent. The reactors, constructed in the Fall of 1998, were designed to evaluate the SRB technology applied under different environmental conditions. Each bioreactor was designed with mechanisms to enable simulation of seasonal dry and wet climatic conditions. Two bioreactors were placed in trenches and one was constructed above the ground to investigate impact of seasonal freezing and thawing on SRB activity. Two bioreactors contain a passive pretreatment section to increase pH of water before the AMD enters the bioreactor chamber.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Design and construction of bioreactors with sulfate-reducing bacteria for acid mine drainage control; Isip:000082416500033; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17136 Serial 177  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: