|   | 
Details
   web
Records
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J.
Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
Year (up) 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal
Volume 17 Issue 4 Pages 99-107
Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim
Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.
Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-3629 ISBN Medium
Area Expedition Conference
Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17555 Serial 67
Permanent link to this record
 

 
Author Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D.
Title Utilization of a ceramic membrane for acid mine drainage treatment Type Journal Article
Year (up) 1997 Publication Tailings and Mine Waste '97 Abbreviated Journal
Volume Issue Pages 453-460
Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment
Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 90-5410-857-6 ISBN Medium
Area Expedition Conference
Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8744 Serial 135
Permanent link to this record
 

 
Author Younger, P.L.; Neal, C.; House, W.A.; Leeks, G.J.L.; Marker, A.H.
Title The longevity of minewater pollution; a basis for decision-making U.K. fluxes to the North Sea; Land Ocean Interaction Study (LOIS); river basins research, the first two years Type Journal Article
Year (up) 1997 Publication The Science of the Total Environment Abbreviated Journal
Volume 194-195 Issue Pages 457-466
Keywords acid mine drainage; acidic composition; acidification; Cornwall England; decision-making; degradation; discharge; England; Europe; Great Britain; hydrolysis; mines; planning; pollutants; pollution; remediation; retention; Scotland; soils; surface water; United Kingdom; Wales; waste disposal; water quality; Western Europe 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes The longevity of minewater pollution; a basis for decision-making U.K. fluxes to the North Sea; Land Ocean Interaction Study (LOIS); river basins research, the first two years; 1997-078352; Special issue References: 30; illus. Netherlands (NLD); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6259 Serial 193
Permanent link to this record
 

 
Author Skousen, J.
Title Overview of passive systems for treating acid mine drainage Type Journal Article
Year (up) 1997 Publication Green Lands Abbreviated Journal
Volume 27 Issue 4 Pages 34-43
Keywords acid mine drainage; anoxic limestone drains; bioremediation; constructed wetlands; diversion wells; limestone ponds; mitigation; open limestone channels; passive systems; pollution; remediation; successive alkalinity producing systems; technology; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0271-0110 ISBN Medium
Area Expedition Conference
Notes Overview of passive systems for treating acid mine drainage; 2000-019214; References: 59; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6309 Serial 247
Permanent link to this record
 

 
Author Noss, R.R.; Crago, R.W.; Gable, J.; Kerber, B.; Mafi, S.
Title Use of flue gas desulfurization sludge in abandoned mine land reclamation Type Journal Article
Year (up) 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords abandoned mines; acid mine drainage; flue gas desulfurization sludge; land management; land use; liquid waste; mines; mining; mining geology; moisture; pH; pollution; reclamation; remediation; soils; strip mining; surface mining; waste disposal 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher The Ohio Journal of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Ohio Academy of Science 106th annual meeting; progress toward water quality in the Lake Erie basin; abstracts Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1999-043696; Ohio Academy of Science 106th annual meeting, Bowling Green, OH, United States, April 4-6, 1997; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6302 Serial 282
Permanent link to this record