|   | 
Details
   web
Records
Author Brown, M.; Barley, B.; Wood, H.
Title Type Book Whole
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acidic composition bioremediation case studies chemical composition chemical reactions coal mines concentration constructed wetlands discharge England Europe Great Britain ground water international cooperation ion exchange kinetics legislation mines mining open-pit mining physicochemical properties policy pollution regulations remediation Scotland sulfate ion surface mining surface water tailings techniques technology underground mining United Kingdom Wales waste disposal waste management waste rock water pollution water resources water treatment weathering Western Europe wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher IWA Publishing Place of Publication London Editor
Language Summary Language Original Title
Series Editor Series Title Minewater treatment; technology, application and policy Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1843390043 Medium
Area Expedition Conference
Notes Minewater treatment; technology, application and policy; 2006-084782; GeoRef; English; Includes appendices References: 416; illus. Approved no
Call Number CBU @ c.wolke @ 16503 Serial 433
Permanent link to this record
 

 
Author Wiseman, I.M.; Edwards, P.J.; Rutt, G.P.
Title Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands Type Journal Article
Year (up) 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 221-230
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects Wetlands and estuaries geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) geographical abstracts: physical geography hydrology (71 6 8) coal mine recovery aquatic ecosystem constructed wetland water treatment mine drainage abandoned mine
Abstract Seven kilometres of the River Pelenna in South Wales were impacted for approximately 30 years by discharges from abandoned coal mines. Elevated iron and low pH caused significant ochreous staining and had detrimental effects on the river ecology. The River Pelenna Mine water project constructed a series of passive wetland treatment systems to treat these discharges. Monitoring of the performance and environmental benefits of these has been undertaken as part of an Environment Agency R&D project. This project has assessed the changes in water quality as well as monitoring populations of invertebrates, fish and birds between 1993 and 2001. Performance data from the wetlands show that on average the three systems are removing between 82 and 95% of the iron loading from the mine waters. In the rivers downstream, the dissolved iron concentration has dropped to below the Environmental Quality Standard (EQS) of 1 mg/L for the majority of the time. Increases in pH downstream of the discharges have also been demonstrated. Trout (Salmo trutta) recovered quickly following mine water treatment, returning the next year to areas that previously had no fish. Intermittent problems with overflows from the treatment systems temporarily depleted the numbers, but the latest data indicate a thriving population. The overflow problems and also background episodes of acidity have affected the recovery of the riverine invertebrates. However, there have been gradual improvements in the catchment, and in the summer of 2001 most sites held faunas which approached those found in unpolluted controls. Recovery of the invertebrate fauna is reflected in marked increases in the breeding success of riverine birds between 1996 and 2001. This study has shown that constructed wetlands can be an effective, low cost and sustainable solution to ecological damage caused by abandoned mine drainage.
Address I.M. Wiseman, Environment Agency Wales, 19 Penyfai Lane, Furnace, Llanelli SA15 4EL, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands; 2530429; United-Kingdom 25; Geobase Approved no
Call Number CBU @ c.wolke @ 17516 Serial 206
Permanent link to this record
 

 
Author Taylor, J.; Waters, J.
Title Treating ARD; how, when, where and why Type Journal Article
Year (up) 2003 Publication Mining Environmental Management Abbreviated Journal
Volume 11 Issue 3 Pages 6-9
Keywords acid mine drainage; acid rock drainage; acidification; alkalinity; carbonate rocks; chemical properties; chemical reactions; coal; disposal barriers; economics; flocculation; ground water; heavy metals; human activity; ion exchange; limestone; mines; oxidation; oxides; permeability; pollution; porosity; pyrolusite; remediation; sedimentary rocks; surface water; waste disposal; waste management; water pollution; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Treating ARD; how, when, where and why; 2004-045038; References: 8; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5528 Serial 225
Permanent link to this record
 

 
Author Rukin, N.
Title Whittle mine water treatment system: In-river attenuation of manganese Type Journal Article
Year (up) 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 137-144
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) river water natural attenuation manganese water treatment mine drainage coal mine
Abstract Much work has been undertaken on the design of treatment systems to remove iron from ochreous mine water discharges. Unlike iron, manganese removal is far more difficult and generally requires active chemical dosing rather than passive treatment. The need for manganese removal can therefore significantly change the economics, management attention and sustainability of a site. Understanding natural attenuation of manganese in river systems is therefore key to deciding whether (active) manganese treatment is needed to protect downstream receptors. Nuttall (2002, this volume) describes the effectiveness of the passive treatment system at Whittle in reducing both iron and manganese concentrations in ochreous mine waters. This paper discusses the results of in-river monitoring and provides evidence for manganese removal downstream of the discharge point. In addition to dilution, attenuation appears to be in the order of 20 to 50%, depending on relative rates of mine water discharge and river flows. Such attenuation means that active treatment may not be needed for the long-term operation of the Whittle scheme. Operation of the scheme commenced in July 2002, with monitoring to further examine evidence for manganese attenuation and any impact on the ecology of the recipient watercourses.
Address N. Rukin, Entec UK Ltd., 160-162 Abbey Foregate, Shrewsbury SY2 6BZ, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes Whittle mine water treatment system: In-river attenuation of manganese; 2530418; United-Kingdom 2; Geobase Approved no
Call Number CBU @ c.wolke @ 17521 Serial 257
Permanent link to this record
 

 
Author Houston, K.S.; Milionis, P.N.; Eppley, R.L.; Harrington, J.M.; Harrington, J.G.
Title Field Demonstration of In-Situ Treatment and Prevention of Acid Mine Drainage in the Abandoned Tide Mine, Indiana County, Pennsylvania Type Journal Article
Year (up) 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords in situ ferrous sulfide precipitation sulfate reduction coal bromide tracer Tide Mine Center Township PA tracer study
Abstract A field demonstration of the Green World Science® patented process technology was performed to address acid mine drainage (AMD) at an abandoned bituminous coal mine, the Tide Mine in Center Township, Indiana County, PA. ARCADIS owns an exclusive patent license of the Green World Science® process, which can be used in situ to transform an aerobic, AMD-producing mine pool to a biologically mediated, sulfate-reducing state. The Green World Science® process treats the entire mine pool to address the source of AMD in place. The project was conducted through a grant agreement between the Blacklick Creek Watershed Association, the Pennsylvania Department of Environmental Protection's Bureau of Abandoned Mine Reclamation, and ARCADIS. In conjunction with the characterization of mine pool hydraulics through injection of a bromide tracer, the in situ treatments implemented at Tide Mine include the initial addition of alkalinity to create an environment suitable for biological activity, injection of organic carbon into the mine pool to facilitate microbially mediated metals reduction and precipitation, and injection of carbon dioxide gas into the atmosphere above the mine pool to control the dominant source of oxygen that perpetuates the AMD process. Collectively, these treatments raised the pH from a baseline of approximately 2.5 to over 6 during the demonstration period. The mine pool subsequently maintains a pH above 5 through microbially produced (i.e., bicarbonate) alkalinity. Ferric iron has been reduced to non-detect concentrations within the anaerobic mine pool, and aluminum concentrations have decreased by approximately 30%, with additional metals removal expected as the system becomes controlled by ferrous sulfide precipitation. The injection of carbon dioxide gas into the mine workings decreased oxygen concentrations above the mine pool from over 20% (ambient air conditions) to less than 5% over approximately three months, thus mitigating the source of AMD within the mine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 26th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2; als Datei vorhanden 6 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17355 Serial 347
Permanent link to this record