|   | 
Details
   web
Records
Author Skousen, J.G.
Title An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs Type Journal Article
Year (up) 1991 Publication Environmental Management for the 1990s Abbreviated Journal
Volume Issue Pages 173-178
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes An Evaluation Of Acid-Mine Drainage Treatment Systems And Costs; Isip:A1991bs89e00024; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9041 Serial 148
Permanent link to this record
 

 
Author Skousen, J.G.
Title Acid-Mine Drainage Treatment Alternatives Type Journal Article
Year (up) 1992 Publication Land Reclamation : Advances in Research & Technology Abbreviated Journal
Volume Issue Pages 297-303
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid-Mine Drainage Treatment Alternatives; Isip:A1992by10s00035; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9016 Serial 147
Permanent link to this record
 

 
Author Bochkarev, G.R.; Beloborodov, A.V.; Kondrat'ev, S.A.; Pushkareva, G.I.
Title Intensification of Aeration in treating Natural-Water and Mine Water Type Journal Article
Year (up) 1994 Publication J. Min. Sci. Abbreviated Journal
Volume 30 Issue 6 Pages 5
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-7391 ISBN Medium
Area Expedition Conference
Notes Nov; Intensification of Aeration in treating Natural-Water and Mine Water; New York: Consultants Bureau; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7033.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7033 Serial 15
Permanent link to this record
 

 
Author Bechard, G.
Title Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage Type Journal Article
Year (up) 1994 Publication Journal of Environmental Quality Abbreviated Journal
Volume 23 Issue 1 Pages 111-116
Keywords mine water treatment
Abstract A mixed aerobic-anaerobic microbial treatment process was developed previously for acid mine drainage (AMD) using straw as a substrate. The process was effective only if AMD was supplemented with sucrose. The present study was conducted to determine which, if any, of three cellulosic materials could sustain the microbial treatment of AMD without the addition of a sucrose amendment and to determine the effect of the retention time on the performance of the reactors. The performance of small reactors that treated simulated AMD in the continuous mode was evaluated using alfalfa (Medicago sativa L.) hay, timothy (Phleum pratense L.) hay, and straw with a 5 d retention time. Parameters measured were pH, Fe, Al, sulfate, and ammonium. Timothy hay and straw sustained AMD mitigation for 3 wk, and thereafter all activity ceased. After the reactors ceased treating AMD, the mitigative activities were reinitiated by the addition of sucrose, but not by urea. Alfalfa sustained AMD mitigation for a longer time period than either straw or timothy. The effect of three retention times, 3.5, 7, and 35 d, was then investigated for reactors containing fresh alfalfa. Increasing the retention time resulted in better metal removal and a greater pH increase. With a 7-d retention time, 75 L of simulated AMD were neutralized from a pH of 3.5 to a pH value greater than 6.5. Reactors operating with a 3.5-d retention time treated only 58.3 L of simulated AMD before failing. Ammonium was detected in effluents of active reactors. The results of this study indicate that a low maintenance microbial treatment system can be developed with alfalfa as a substrate without the addition of a sucrose amendment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage; Wos:A1994mu33000017; Times Cited: 22; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17194 Serial 89
Permanent link to this record
 

 
Author Bhole, A.G.
Title Acid-Mine Drainage And Its Treatment Type Journal Article
Year (up) 1994 Publication Impact of Mining on the Environment Abbreviated Journal
Volume Issue Pages 131-141
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid-Mine Drainage And Its Treatment; Isip:A1994ba02k00015; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8945 Serial 146
Permanent link to this record