|   | 
Details
   web
Records
Author Bloom, N.S.; Preus, E.; Kilner, P.I.; von der Geest, E.; Hensman, C.E.
Title Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; Berkeley Pit; Butte Montana; decontamination; geochemistry; hydrochemistry; industrial waste; metals; mineral composition; Montana; pollution; Silver Bow County Montana; soils; sulfates; surface water; toxic materials; trace metals; United States; waste disposal; water treatment 22 Environmental geology; 02A General geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046176; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5625 Serial 445
Permanent link to this record
 

 
Author Tabak, H.H.; Govind, R.
Title Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts Type Book Chapter
Year (up) 2004 Publication Soil & Sediment Contamination Abbreviated Journal
Volume Issue Pages 171-172
Keywords acid mine drainage; acid rock drainage; acidification; bacteria; biodegradation; bioreactors; bioremediation; decontamination; effluents; geomembranes; heavy metals; pollutants; pollution; remediation; sulfate reducing bacteria; sulfates; sulfides; Thiobacillus; waste water 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication 13 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts; GeoRef; English; 2006-064109; 19th annual international conference on Soils, sediments, and water, Amherst, MA, United States, Oct. 20-23, 2003 Approved no
Call Number CBU @ c.wolke @ 5471 Serial 13
Permanent link to this record
 

 
Author Bowell, R.J.
Title Type Book Whole
Year (up) 2004 Publication Abbreviated Journal
Volume Issue Pages 75-91
Keywords mine water sulphate removal passive treatment acid mine drainage bacteria bioremediation decontamination effluents ground water legislation osmosis oxidation pollutants pollution remediation reverse osmosis selenites sulfate ion toxic materials USGS water treatment
Abstract
Address
Corporate Author Thesis
Publisher University of Newcastle Place of Publication 2 Editor Jarvis Adam, P.; Dudgeon Bruce, A.; Younger Paul, L.
Language Summary Language Original Title
Series Editor Series Title mine water 2004 – Proceedings International Mine Water Association Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-9543827-4-9 Medium
Area Expedition Conference
Notes A review of sulphate removal options for mine waters; 1; AMD ISI | Wolkersdorfer; FG 6 Abb., 7 Tab. Approved no
Call Number CBU @ c.wolke @ 9546 Serial 439
Permanent link to this record
 

 
Author Curi, A.C.; Granda, W.J.V.; Lima, H.M.; Sousa, W.T.
Title Zeolites and their application in the decontamination of mine waste water Type Journal Article
Year (up) 2006 Publication Informacion Tecnologica Abbreviated Journal
Volume 17 Issue 6 Pages 111-118
Keywords adsorption decontamination effluents industrial waste ion exchange metallurgical industries metallurgy mining mining industry porosity wastewater treatment zeolites zeolites decontamination mine waste water genesis porosity adsorption ionic exchange mineral metallurgical effluents mercury pollution artisan mining activities heavy metals removal metal mining effluents mercury vapors ovens fire amalgams Manufacturing and Production
Abstract This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0716-8756 ISBN Medium
Area Expedition Conference
Notes Zeolites and their application in the decontamination of mine waste water; 9532002; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16784 Serial 409
Permanent link to this record