|   | 
Details
   web
Records
Author Kingham, N.W.; Semenak, R.; Powell, G.; Way, S.
Title Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; Basin-Luttrell Pit; cost; environmental effects; leachate; Lewis and Clark County Montana; metals; Montana; osmosis; pollutants; pollution; precipitation; reverse osmosis; soils; sulfates; tailings; Ten Mile Creek; United States; waste rock; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046128; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5610 Serial 331
Permanent link to this record
 

 
Author Arango, I.
Title Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems Type Book Whole
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage atmospheric precipitation benthic taxa bioremediation dissolved materials dissolved oxygen electron microscopy data Euglena mutabilis Green Valley Mine ICP mass spectra Indiana iron mass spectra metals microorganisms mines oxygen pH photochemistry photosynthesis pollution rain remediation sediments soils spectra temperature United States Vigo County Indiana water 22, Environmental geology
Abstract Euglena mutabilis is an acidophilic, photosynthetic protozoan that forms benthic mats in acid mine drainage (AMD) channels. At the Green Valley mine, western Indiana, E. mutabilis resides in AMD measuring <4.2 pH, with high concentrations of dissolved constituents (up to 22.67 g/l). One of the main factors influencing E. mutabilis distribution is water temperature. The microbe forms thick (>1 mm), extensive mats during spring and fall, when water temperature is between 13 and 28 degrees C. During winter and summer, when temperatures are outside this range, benthic communities have a very patchy distribution and are restricted to areas protected from extreme temperature changes. E. mutabilis also responds to rapid increases in pH, which are associated with rainfall events. During these events pH can increase above 4.0, causing precipitation of Fe and Al oxy-hydroxides that cover the mats. The microbe responds by moving through the precipitates, due to phototaxis, and reestablishing the community at the sediment-water interface within 12 hours. The biological activities of E. mutabilis may have a beneficial effect on AMD systems by removing iron from effluent via oxygenic photosynthesis, and/or by internal sequestration. Photosynthesis by E. mutabilis contributes elevated concentrations of dissolved oxygen (DO), up to 17.25 mg/l in the field and up to 11.83 mg/l in the laboratory, driving oxidation and precipitation of reduced metal species, especially Fe (II), which are dissolved in the effluent. In addition, preliminary electro-microscopic and staining analyses of the reddish intracellular granules in E. mutabilis indicate that the granules contain iron, suggesting that E. mutabilis sequesters iron from AMD. Inductive coupled plasma analysis of iron concentration in AMD with and without E. mutabilis also shows that E. mutabilis accelerates the rate of Fe removal from the media. Whether iron removal is accelerated by internal sequestration of iron and/or by precipitation via oxygenic photosynthesis has yet to be determined. These biological activities may play an important role in the natural remediation of AMD systems.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Indiana State University, Place of Publication Terre Haute Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems; GeoRef; English; References: 39; illus. incl. 3 tables Approved no
Call Number CBU @ c.wolke @ 16491 Serial 476
Permanent link to this record
 

 
Author Al-Abed, S.; Allen, D.; Bates, E.; Reisman, D.
Title Lime treatment lagoons technology for treating acid mine drainage from two mining sites Type Journal Article
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; case studies; Copper Mine; drainage; geochemistry; heavy metals; hydrochemistry; Leviathan Mine; mining; Nevada; pH; pollutants; pollution; precipitation; remediation; runoff; surface water; Tennessee; United States; waste lagoons; water treatment 22 Environmental geology; 02B Hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Hardrock mining 2002; issues shaping the industry Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2007-046170; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5621 Serial 487
Permanent link to this record
 

 
Author Coulton, R.; Bullen, C.; Hallett, C.
Title The design and optimisation of active mine water treatment plants Type Journal Article
Year (up) 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 273-280
Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage
Abstract This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.
Address R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17513 Serial 59
Permanent link to this record
 

 
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year (up) 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume 39 Issue 12 Pages 4606-4613
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record