|   | 
Details
   web
Records
Author Stoica, L.; Dima, G.
Title Pb(II) removal from aqueous systems by biosorption-flotation on mycelial residues of Penicillium chrysogenum Type Book Chapter
Year (up) 2000 Publication 7th international Mine Water Association congress; Mine water and the environment Abbreviated Journal
Volume Issue Pages 472-481
Keywords bioremediation; flotation; ground water; lead; metals; Penicillium; Penicillium chrysogenum; pollution; remediation; sorption; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Uniwersytet Slaski Place of Publication Sosnowiec Editor Rozkowski, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 8387431230 Medium
Area Expedition Conference
Notes Pb(II) removal from aqueous systems by biosorption-flotation on mycelial residues of Penicillium chrysogenum; GeoRef; English; 2002-018169; 7th international Mine Water Association congress; Mine water and the environment, Katowice-Ustron, Poland, Sept. 11-15, 2000 References: 6; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 5852 Serial 228
Permanent link to this record
 

 
Author Mohan, D.; Chander, S.
Title Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent Type Journal Article
Year (up) 2006 Publication J. Hazard. Mater. Abbreviated Journal
Volume 137 Issue 3 Pages 1545-1553
Keywords Geobase: Related Topics geobase: related topics (901) acid mine drainage adsorption ion iron sulfide lignite wastewater water treatment
Abstract Acid mine drainage (AMD), has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove and recover metal ions from acid mine drainage (AMD) by using lignite, a low cost sorbent. Lignite has been characterized and used for the AMD treatment. Sorption of ferrous, ferric, manganese, zinc and calcium in multi-component aqueous systems was investigated. Studies were performed at different pH to find optimum pH. To simulate industrial conditions for acid mine wastewater treatment, all the studies were performed using single and multi-columns setup in down flow mode. The empty bed contact time (EBCT) model was used for minimizing the sorbent usage. Recovery of the metal ions as well as regeneration of sorbent was achieved successfully using 0.1 M nitric acid without dismantling the columns. < copyright > 2006 Elsevier B.V. All rights reserved.
Address D. Mohan, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States dm_1967@hotmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Medium
Area Expedition Conference
Notes Oct 11; Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent; 2919875; Netherlands 56; Geobase Approved no
Call Number CBU @ c.wolke @ 17634 Serial 295
Permanent link to this record
 

 
Author Curi, A.C.; Granda, W.J.V.; Lima, H.M.; Sousa, W.T.
Title Zeolites and their application in the decontamination of mine waste water Type Journal Article
Year (up) 2006 Publication Informacion Tecnologica Abbreviated Journal
Volume 17 Issue 6 Pages 111-118
Keywords adsorption decontamination effluents industrial waste ion exchange metallurgical industries metallurgy mining mining industry porosity wastewater treatment zeolites zeolites decontamination mine waste water genesis porosity adsorption ionic exchange mineral metallurgical effluents mercury pollution artisan mining activities heavy metals removal metal mining effluents mercury vapors ovens fire amalgams Manufacturing and Production
Abstract This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0716-8756 ISBN Medium
Area Expedition Conference
Notes Zeolites and their application in the decontamination of mine waste water; 9532002; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16784 Serial 409
Permanent link to this record