|   | 
Details
   web
Records
Author Holmes, J.; Schmidt, K.
Title Ion exchange treatment of acid mine drainage Type Journal Article
Year (up) 1972 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; applications; economics; engineering geology; experimental studies; ion exchange; liquid waste; reclamation; treatment; waste disposal; water resources 30, Engineering geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0085-7068 ISBN Medium
Area Expedition Conference
Notes Ion exchange treatment of acid mine drainage; 1976-011827; illus. incl. tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6848 Serial 349
Permanent link to this record
 

 
Author Pettit, C.M.; Scharer, J.M.; Chambers, D.B.; Halbert, B.E.; Kirkaldy, J.L.; Bolduc, L.
Title Neutral mine drainage Type Book Chapter
Year (up) 1999 Publication Sudbury '99; mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage drainage geochemistry mining mining geology models neutral mine drainage pH pollution remediation technology water management water quality water resources 22, Environmental geology
Abstract Acid mine drainage is recognized as a serious environmental issue at mine sites world wide. While sulphate and metal concentrations in acidic drainage can reach exceptionally high levels, these can also be elevated and of concern in neutral drainage from waste rock and tailings. “Neutral mine drainage” (NMD) has not yet received as widespread attention as acid mine drainage (AMD). The oxidation of sulphide minerals and the production of either acidic or neutral contaminated drainage is affected by many factors. This paper examines the specific factors that result in the production of “neutral mine drainage” from mine wastes. Several case studies are presented which involve predictive geochemical modelling to illustrate the possible time frame and magnitude of contaminated neutral drainage.
Address
Corporate Author Thesis
Publisher Sudbury Environmental Place of Publication Sudbury Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Neutral mine drainage; GeoRef; English; 2000-043769; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 12; illus. incl. 3 tables Approved no
Call Number CBU @ c.wolke @ 16589 Serial 270
Permanent link to this record
 

 
Author Berg, G.J.; Arthur, B.
Title Proposed mine water treatment in Wisconsin Type Book Chapter
Year (up) 1999 Publication Sudbury '99; mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords metals mines pollutants pollution remediation tailings United States waste water water water management water quality water resources water treatment Wisconsin 22, Environmental geology
Abstract Water quality standards are driving wastewater effluent limits to ultra-low levels in the nanogram/L range. Standards are proposed that require discharges to match background water quality. The new ultra-low level standards require cautious sampling techniques, super clean laboratory methods and more advanced treatment technologies. This paper follows a case history through water quality standards for ultra-low metals, laboratory selection, and the design of a wastewater treatment system that can meet the water quality standards which are required to permit a proposed copper and zinc mine in Northern Wisconsin. A high degree of care must be taken when sampling for ultra-low level metals. Both surface water and treated effluent samples present new challenges. Sampling methods used must assure that there are no unwanted contaminants being introduced to the samples. The selection of a laboratory is as critical as the construction of a state of the art wastewater treatment system. Treatment methods such as lime and sulfide precipitation have had a high degree of success, but they do have limitations. Given today's ultra-low standards, it is necessary to assess the ability of reverse osmosis, deionization, and evaporation to provide the high level of treatment required.
Address
Corporate Author Thesis
Publisher Sudbury Environmental Place of Publication Sudbury Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Proposed mine water treatment in Wisconsin; GeoRef; English; 2000-043747; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement II, Sudbury, ON, Canada, Sept. 13-17, 1999 illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16588 Serial 451
Permanent link to this record
 

 
Author Smit, J.P.
Title Potable water from sulphate polluted mine sources Type Journal Article
Year (up) 2000 Publication Mining Environmental Management Abbreviated Journal
Volume 8 Issue 6 Pages 7-9
Keywords acid mine drainage; Africa; cost; drinking water; economics; pollutants; pollution; potability; remediation; South Africa; Southern Africa; sulfates; water quality; water resources 21 Hydrogeology; 22 Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Potable water from sulphate polluted mine sources; 2001-038331; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5799 Serial 239
Permanent link to this record
 

 
Author Ziemkiewicz, P.; Skousen, J.; Simmons, J.
Title Cost benefit analysis of passive treatment systems Type Journal Article
Year (up) 2001 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; Augusta coal field; Big Bear Lake; carbonate rocks; coal mines; cost; dams; drainage basins; economics; ferric iron; Indiana; iron; limestone; metals; mines; optimization; oxidation; Pike County Indiana; pollution; Preston County West Virginia; pyrite; sedimentary rocks; South Fork Patoka River; spoils; sulfate ion; sulfides; surface water; United States; water pollution; water quality; water resources; water treatment; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia Surface Mine Drainage Task Force Symposium Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 22nd West Virginia surface mine drainage task force symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2002-047125; Twenty-second West Virginia surface mine drainage task force symposium, Morgantown, WV, United States, April 3-4, 2001 References: 7; illus. incl. 9 tables; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5766 Serial 191
Permanent link to this record