|   | 
Details
   web
Records
Author Dutcher, R.R.; Jones, E.B.; Lovell, H.L.; Parizek, R.; Stefanko, R.
Title Mine drainage; Part 1, Abatement, disposal, treatment Type Journal Article
Year (up) 1966 Publication Mineral Industries (University Park) Abbreviated Journal
Volume 36 Issue 3 Pages 1-7
Keywords Acid drainage problem; acid mine drainage; coal mines; disposal wells; engineering geology; mines; mining geology; Pennsylvania; United States; waste disposal 30, Engineering geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-2320 ISBN Medium
Area Expedition Conference
Notes Mine drainage; Part 1, Abatement, disposal, treatment; 1966-013727; illus., table United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6857 Serial 397
Permanent link to this record
 

 
Author Entrena, A.L.; Serrano, J.R.; Villoria, A.
Title Descontaminacion de aguas de mina con recuperacion de los metales contenidos en ellas. Decontamination of mine waters by recovering the metals contained within them VIII congreso internacional de Mineria y metalurgia; tomo 8. VIII international conference on Mining and metallurgy; Volume 8 Type Book Chapter
Year (up) 1988 Publication Congreso Internacional de Mineria y Metalurgia, vol.8 Abbreviated Journal
Volume Issue Pages 156-173
Keywords actinides; Castilla y Leon Spain; decontamination; Europe; Iberian Peninsula; iron minerals; Leon region; metals; mines; pollution; recovery; remediation; Salamanca Spain; Southern Europe; Spain; uranium; water pollution 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Asociacion Nacional de Ingenieros de Minas de Espana, O. Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Descontaminacion de aguas de mina con recuperacion de los metales contenidos en ellas. Decontamination of mine waters by recovering the metals contained within them VIII congreso internacional de Mineria y metalurgia; tomo 8. VIII international conference on Mining and metallurgy; Volume 8; GeoRef; Spanish; 1997-066026; 8. Congreso internacional de Mineria y metalurgia, Oviedo, Spain, 1988 4 tables Approved no
Call Number CBU @ c.wolke @ 6774 Serial 389
Permanent link to this record
 

 
Author Kleinmann, R.L.P.
Title Acid Mine Water Treatment using Engineered Wetlands Type Journal Article
Year (up) 1990 Publication Int. J. Mine Water Abbreviated Journal
Volume 9 Issue 1-4 Pages 269-276
Keywords wetlands AMD passive treatment pollution control water treatment abandoned mines biological treatment pH bacterial oxidation wetland sizing sphagnum
Abstract 400 systems installed within 4 years During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (in2) required is equivalent to the iron. load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (in2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-6960 ISBN Medium
Area Expedition Conference
Notes Acid Mine Water Treatment using Engineered Wetlands; 1; Fg; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17368 Serial 328
Permanent link to this record
 

 
Author Norton, P.J.
Title The Control of Acid Mine Drainage with Wetlands Type Journal Article
Year (up) 1992 Publication Mine Water Env. Abbreviated Journal
Volume 11 Issue 3 Pages 27-34
Keywords acid mine drainage construction chemistry artificial wetlands pollution control performance evaluation coal mines pollution control and prevention
Abstract The recent increases in environmental legislation, especially in the USA'have meant that there is a need on behalf of the mining companies for more judicious operational planning and more thorough restoration techniques in order to reduce costs and prevent violation of the smctly enforced regulations. Water pollution is probably the greatest problem and many less enlightened operators, especially for example, in surface coal milling in Pennsylvania, have been forced into liquidation after having been unable to meet the severe restrictions on Acid Mine Drainage (AMD). The problems of AMD are also inherent in most forms of metalliferous and coal mining and also in some types of aggregate quarrying. As excavations go deeper in search of ever diminishing reserves then they are more likely to encounter groundwater which can become polluted if insufficient care is not taken. It is to be expected that the laws will also become more severe than they are at present in Europe and methods of treatment of AMD will need to be developed that are more efficient than the costly chemical methods currently used. Research by the author and others into the source of AMD pollution and its treatment with engineered wetlands and other operational methods are discussed in the paper. The methods have- the distinct benefit that they are cheap to install, are cost effective over a long period with the minimum of supervision and are environmentally acceptable to the planning and regulatory authorities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The Control of Acid Mine Drainage with Wetlands; 1; 1 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17401 Serial 284
Permanent link to this record
 

 
Author Nairn, R.W.; Hedin, R.S.
Title Designing wetlands for the treatment of polluted coal mine drainage Type Book Chapter
Year (up) 1992 Publication Wetlands; proceedings of the 13th annual conference; Society of Wetland Scientists Abbreviated Journal
Volume Issue Pages 224-229
Keywords acidic composition; alkalinity; Appalachian Plateau; Appalachians; biodegradation; carbonate rocks; chemical properties; coal mines; constructed wetlands; construction; limestone; mine drainage; mines; North America; Pennsylvania; pollutants; pollution; reclamation; remediation; sedimentary rocks; United States; western Pennsylvania; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Landin, M.C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Designing wetlands for the treatment of polluted coal mine drainage; GeoRef; English; 1996-062750; 13th annual conference of the Society of Wetland Scientists, New Orleans, LA, United States, May 31-June 6, 1992 References: 7 Approved no
Call Number CBU @ c.wolke @ 6720 Serial 289
Permanent link to this record