|   | 
Details
   web
Records
Author Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B.
Title Mine-water chemistry: The good, the bad and the ugly Type Journal Article
Year (up) 1997 Publication Environ. Geol. Abbreviated Journal
Volume 32 Issue 3 Pages 157-174
Keywords mine water treatment mine-water chemistry acid mine drainage mine-water pollution mine-water treatment county-durham drainage movements Pollution and waste management non radioactive Groundwater problems and environmental effects mine drainage contamination hydrogeochemistry mine water drainage acid mine drainage
Abstract Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.
Address D. Banks, Norges Geologiske Undersokelse, Postboks 3006 – Lade, N-7002 Trondheim, Norway
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0943-0105 ISBN Medium
Area Expedition Conference
Notes Oct.; Mine-water chemistry: The good, the bad and the ugly; 0337169; Germany 78; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10620.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 10620 Serial 18
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J.
Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
Year (up) 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal
Volume 17 Issue 4 Pages 99-107
Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim
Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.
Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-3629 ISBN Medium
Area Expedition Conference
Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17555 Serial 67
Permanent link to this record
 

 
Author Kleinmann, R.; Majumdar, S.K.; Miller, E.W.; Brenner, F.J.
Title Type Book Whole
Year (up) 1998 Publication Abbreviated Journal
Volume Issue Pages 497-509
Keywords abandoned mines; acid mine drainage; coal mines; constructed wetlands; drainage; environmental effects; mines; mitigation; pollutants; pollution; remediation; surface water; toxic materials; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher The Pennsylvania Academy of Science Book Publications Place of Publication 25 Editor
Language Summary Language Original Title
Series Editor Series Title Ecology of wetlands and associated systems Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructing wetlands for passive treatment of coal mine drainage; 2002-024212; GeoRef; English; References: 27; illus. incl. 2 tables United States (USA) Approved no
Call Number CBU @ c.wolke @ 6210 Serial 330
Permanent link to this record
 

 
Author Ballivy, G.; Bienvenu, L.
Title Stabilisation des rejets miniers a l'aide de rejets de cimenterie. Stabilization of mining wastes using cement factory wastes Activites de recherche du Ministere des Ressources Naturelles du Quebec sur le drainage minier acide; rapport 1997-1998. Research activities of the Quebec Natural Resources Ministry on acid mine drainage; report 1997-1998 Type RPT
Year (up) 1998 Publication Abbreviated Journal
Volume Rn 98-5034 Issue Pages
Keywords abandoned mines; acid mine drainage; Canada; cement materials; construction materials; cost; disposal barriers; Eastern Canada; environmental effects; industrial waste; mines; mining; pollution; Quebec; reclamation; remediation; stabilization; waste disposal 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Stabilisation des rejets miniers a l'aide de rejets de cimenterie. Stabilization of mining wastes using cement factory wastes Activites de recherche du Ministere des Ressources Naturelles du Quebec sur le drainage minier acide; rapport 1997-1998. Research activities of the Quebec Natural Resources Ministry on acid mine drainage; report 1997-1998; 1999-012051; GeoRef; French; 1203-1275 illus. incl. 1 table Approved no
Call Number CBU @ c.wolke @ 6127 Serial 468
Permanent link to this record
 

 
Author
Title 'Green' company offers desalination technology Type Journal Article
Year (up) 1998 Publication Water Sewage and Effluent Abbreviated Journal
Volume 18 Issue 4 Pages 9-11
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage environmental effect mine drainage
Abstract Water and wastewater treatment activities, projects and capabilities of South African environmental engineering specialist Envig are detailed. The company, as part of the Weir Wesgarth Consortium, has pre-qualified for the major Namibian Water Supply Project, one of the largest of its kind to date in southern Africa. This project involves the desalination of seawater to meet increasing water demand and shortfalls. Envig, if awarded the contract, would be involved in construction of three or four reverse osmosis or mechanical vapour compression sea water desalination plants and associated infrastructure. The company is also involved in a mine water desalination project at the Eskom Tutuka Power Station. A reverse osmosis plant using low fouling maintenance is being installed to deal with acid mine drainage water. Details of the design and operation of this plant are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8700 ISBN Medium
Area Expedition Conference
Notes 'Green' company offers desalination technology; 0432290; South-Africa; Geobase Approved no
Call Number CBU @ c.wolke @ 17548 Serial 496
Permanent link to this record