|   | 
Details
   web
Records
Author Skousen, J.
Title Overview of passive systems for treating acid mine drainage Type Journal Article
Year 1997 Publication Green Lands Abbreviated Journal
Volume (down) 27 Issue 4 Pages 34-43
Keywords acid mine drainage; anoxic limestone drains; bioremediation; constructed wetlands; diversion wells; limestone ponds; mitigation; open limestone channels; passive systems; pollution; remediation; successive alkalinity producing systems; technology; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0271-0110 ISBN Medium
Area Expedition Conference
Notes Overview of passive systems for treating acid mine drainage; 2000-019214; References: 59; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6309 Serial 247
Permanent link to this record
 

 
Author Li, L.; Jiang, Y.; Guo, Y.
Title Research on a comprehensive industrialization technology for the treatment of mining water containing sulfate ions Type Journal Article
Year 1999 Publication Meitian Dizhi Yu Kantan = Coal Geology & Exploration Abbreviated Journal
Volume (down) 27 Issue 6 Pages 51-53
Keywords acid mine drainage; coal mines; mines; pollution; purification; sulfate ion; technology; water pollution; water treatment 22, Environmental geology
Abstract A method using a barium reagent was developed for the purification of the higher-sulphate mine water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1001-1986 ISBN Medium
Area Expedition Conference
Notes Research on a comprehensive industrialization technology for the treatment of mining water containing sulfate ions; 2005-057894; References: 5 China (CHN); GeoRef; Chinese Approved no
Call Number CBU @ c.wolke @ 6097 Serial 316
Permanent link to this record
 

 
Author Gong, Z.; Huang, J.; Jiang, H.
Title Study of comprehensive retrieval utilization and the treatment of acid mine wastewater Type Journal Article
Year 1996 Publication Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology Abbreviated Journal
Volume (down) 27 Issue 4 Pages 432-435
Keywords acid mine drainage Asia China copper Far East heavy metals metals pH pollution sulfides utilization waste water water 22, Environmental geology
Abstract Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1005-9792 ISBN Medium
Area Expedition Conference
Notes Study of comprehensive retrieval utilization and the treatment of acid mine wastewater; 1998-066886; References: 4; 4 tables China (CHN); GeoRef; Chinese Approved no
Call Number CBU @ c.wolke @ 16650 Serial 370
Permanent link to this record
 

 
Author Simmons, J.A.; Andrew, T.; Arnold, A.; Bee, N.; Bennett, J.; Grundman, M.; Johnson, K.; Shepherd, R.
Title Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams Type Journal Article
Year 2006 Publication Mine Water Env. Abbreviated Journal
Volume (down) 25 Issue 4 Pages 241-245
Keywords acid mine drainage aluminum calcium limestone sand sediment stream liming West Virginia
Abstract In-stream limestone sand addition (ILSA) has been employed as the final treatment for acid mine drainage discharges at Swamp Run in central West Virginia for six years. To determine the small-scale longitudinal variation in stream water and sediment chemistry and stream biota, we sampled one to three locations upstream of the ILSA site and six locations downstream. Addition of limestone sand significantly increased calcium and aluminum concentrations in sediment and increased the pH, calcium, and total suspended solids of the stream water. Increases in alkalinity were not significant. The number of benthic macroinvertebrate taxa was significantly reduced but there was no effect on periphyton biomass. Dissolved aluminum concentration in stream water was reduced, apparently by precipitation into the stream sediment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams; 1; FG 4 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17420 Serial 248
Permanent link to this record
 

 
Author Canty, G.A.; Everett, J.W.
Title Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage Type Journal Article
Year 2006 Publication Mine Water Env. Abbreviated Journal
Volume (down) 25 Issue 1 Pages 45-55
Keywords acid mine drainage AMD alkaline injection technology fluidized bed combustion ash Oklahoma
Abstract A demonstration project was conducted to investigate treating acid mine water by alkaline injection technology (AIT). A total of 379 t of alkaline coal combustion byproduct was injected into in an eastern Oklahoma drift coal mine. AIT increased the pH and alkalinity, and reduced acidity and metal loading. Although large improvements in water quality were only observed for 15 months before the effluent water chemistry appeared to approach pre-injection conditions, a review of the data four years after injection identified statistically significant changes in the mine discharge compared to pre-injection conditions. Decreases in acidity (23%), iron (18%), and aluminium (47%) were observed, while an increase in pH (0.35 units) was noted. Presumably, the mine environment reached quasi-equilibrium with the alkalinity introduced to the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage; 1; FG 6 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17319 Serial 422
Permanent link to this record