toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wolkersdorfer, C.; Younger, P.L. openurl 
  Title Passive mine water treatment as an alternative to active systems Type Journal Article
  Year 2002 Publication Grundwasser Abbreviated Journal  
  Volume (down) 7 Issue 2 Pages 67-77  
  Keywords Groundwater quality geographical abstracts: physical geography hydrology (71 6 11) water treatment groundwater pollution water quality mine  
  Abstract For the treatment of contaminated mine waters reliable treatment methods with low investment and operational costs are essential. Therefore, passive treatment systems recently have been installed in Great Britain and in Germany (e.g. anoxic limestone drains, constructed wetlands, reactive barriers, roughing filters) and during the last eight years such systems successfully treated mine waters, using up to 6 ha of space. In some cases with highly contaminated mine water, a combination of active and passive systems should be applied, as in any case the water quality has to reach the limits. Because not all the processes of passive treatment systems are understood in detail, current research projects (e.g. EU-project PIRAMID) were established to clarify open questions.  
  Address Dr. Ch. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, Gustav-Zeuner-Str. 12, Freiberg/Saichen 09596, Germany c.wolke@tu-freiberg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1430-483x ISBN Medium  
  Area Expedition Conference  
  Notes Passive mine water treatment as an alternative to active systems; 2428851; Passive Grubenwasserreinigung als Alternative zu aktiven Systemen. Germany 51; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17530 Serial 202  
Permanent link to this record
 

 
Author openurl 
  Title World first: Full-scale BioSure plant commissioned Type Journal Article
  Year 2006 Publication Water Wheel Abbreviated Journal  
  Volume (down) 5 Issue 3 Pages 19-21  
  Keywords Waste Management and Pollution Policy geographical abstracts: human geography environmental planning (70 11 5) wastewater waste facility mine waste gold mine sewage treatment  
  Abstract ERWAT's Ancor Wastewater Treatment Works on the Far East Rand commissioned a 10 Ml/day full-scale plant to treat toxic mine-water from the Grootvlei gold mine using primary sewage sludge. The R15-million plant is treating sulphate rich acid mine drainage using the Rhodes BioSURE Process. First, the pumped mine-water is treated at a high-density separation (HDS) plant to remove iron and condition pH levels. Then it is pumped two km via a newly-constructed 10 Ml capacity pipeline to the Ancor works. This mine-water is then mixed together with primary sewage sludge in a mixing tank from where a splitter box directs the material to eight biological sulphate reducing reactors or bioreactors. The overflow water which is rich in sulphide is pumped through the main pump station to another mixing box. Here, iron slurry is mixed with the material before it is again divided between four reactor clarifiers for sulphide removal. The overflow water, now containing reduced sulphate levels and virtually no sulphide is pumped to Ancor's biofilters for removal of remaining Chemical Oxygen Demand (COD) and ammonia following the conventional sewage treatment process for eventual release into the Blesbokspruit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0258-2244 ISBN Medium  
  Area Expedition Conference  
  Notes Trade-; World first: Full-scale BioSure plant commissioned; 2865725; South-Africa; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17495 Serial 494  
Permanent link to this record
 

 
Author Bolzicco, J.; Carrera, J.; Ayora, C. openurl 
  Title Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage Type Journal Article
  Year 2004 Publication Revista Latino-Americana de Hidrogeologia Abbreviated Journal  
  Volume (down) 4 Issue Pages 27-34  
  Keywords abandoned mines acid mine drainage Agrio River Andalusia Spain aquifers Aznalcollar Mine Cenozoic chemical composition chemical ratios copper ores dams disposal barriers drainage basins Europe geochemistry ground water Guadiamar River hydrochemistry Iberian Peninsula Iberian pyrite belt igneous rocks metal ores mineral composition mines mining Miocene Neogene permeability pH pollution reactive barriers remediation sedimentary rocks sediments Seville Spain Southern Europe Spain surface water tailings Tertiary volcanic rocks waste disposal water treatment zinc ores 22, Environmental geology  
  Abstract As a result of the collapse of a mine tailing dam in april 1998 about 40 km of the Agrio and Guadiamar valleys were covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil of the Agrio valley and the aquifer remains polluted with acid water (ph<4) and metals (10 mg/L Zn, 5 mg/L Cu and Al). A permeable reactive barrier was build across the aquifer to increase the alcalinity and retain the metals. The barrier is made up of three sections of 30 m longX1.4 m thickX5 m deep (average) containing different proportions of limestone gravel, organic compost and zero-valent iron. The residence time of the water in the barrier is about two days. Within the barrier, the pH values increase to near neutral mainly due to calcite dissolution. Metals co-precipitate as oxyhydroxides, and they are also adsorbed on the organic matter surface. Down-stream the barrier, the total pollution removal is around 60-90% for Zn and Cu, and from 50 to 90% for Al and acidity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage; 2004-072864; References: 7; illus. incl. geol. sketch map Brazil (BRA); GeoRef; Spanish Approved no  
  Call Number CBU @ c.wolke @ 16471 Serial 443  
Permanent link to this record
 

 
Author Younger, P.L. openurl 
  Title Minewater treatment using wetlands Type Journal Article
  Year 1997 Publication Water and Environment Manager Abbreviated Journal  
  Volume (down) 2 Issue 4 Pages 11  
  Keywords Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) wetlands mine drainage water treatment  
  Abstract Experiences gained by the UK Mining Industry and effluent treatment companies in theuse of wetlands for treating minewaters are discussed. Discharges from abandoned mines is a major cause of freshwater pollution in some regions. Key topics relating to the use of wetlands for minewater treatment will be discussed at a CIWEM conference in Newcastle on 5 September 1997.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Minewater treatment using wetlands; 0283405; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10624 Serial 200  
Permanent link to this record
 

 
Author Kepler, D.A.; Mc Cleary, E.C. url  openurl
  Title Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage Type Journal Article
  Year 1994 Publication Proceedings, International Land Reclamation and Mine Drainage Conference Abbreviated Journal  
  Volume (down) 1 Issue Pages 195-204  
  Keywords acid mine drainage; alkalinity; anaerobic environment; calcium carbonate; chemical reactions; experimental studies; pH; pollutants; pollution; remediation; water quality SAPS mine water RAPS  
  Abstract Constructed wetland treatment system effectiveness has been limited by the alkalinity-producing, or acidity-neutralizing, capabilities of systems. Anoxic limestone drains (ALD's) have allowed for the treatment of approximately 300 mg/L net acidic mine drainage, but current design guidance precludes using successive ALD's to generate alkalinity in excess of 300 mg/L because of concerns with dissolved oxygen. “Compost” wetlands designed to promote bacterially mediated sulfate reduction are suggested as a means of generating alkalinity required in excess of that produced by ALD's. Compost wetlands create two basic needs of sulfate reducing bacteria; anoxic conditions resulting from the inherent oxygen demand of the organic substrate, and quasi-circumneutral pH values resulting from the dissolution of the carbonate fraction of the compost. However, sulfate reduction treatment area needs are generally in excess of area availability and/or cost effectiveness. Second generation alkalinity-producing systems demonstrate that a combination of existing treatment mechanisms has the potential to overcome current design concerns and effectively treat acidic waters ad infinitum. Successive alkalinity-producing systems (SAPS) combine ALD technology with sulfate reduction mechanisms. SAPS promote vertical flow through rich organic wetland substrates into limestone beds beneath the organic compost, discharging the pore waters. SAPS allow for conservative wetland treatment sizing calculations to be made as a rate function based on pH and alkalinity values and associated contaminant loadings. SAPS potentially decrease treatment area requirements and have the further potential to generate alkalinity in excess of acidity regardless od acidity concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage; Cn, Kj, Aj; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9722.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9722 Serial 55  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: