|   | 
Details
   web
Records
Author Olaniran, A.O.
Title Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes Type Journal Article
Year 2006 Publication Chemosphere Abbreviated Journal
Volume (down) 63 Issue 4 Pages 600-608
Keywords mine water treatment
Abstract The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to deter-mine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P < 0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil. (c) 2005 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes; Wos:000237379500007; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16936 Serial 111
Permanent link to this record
 

 
Author Lovell, H.L.
Title Limestone Treatment Of Coal Mine Drainage Type Journal Article
Year 1971 Publication Min. Congr. J. Abbreviated Journal
Volume (down) 57 Issue 10 Pages 28-&
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5160 ISBN Medium
Area Expedition Conference
Notes Limestone Treatment Of Coal Mine Drainage; Wos:A1971k631900002; Times Cited: 1; J Allen Overton Jr, 1920 N St Nw, Washington, DC 20036; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9263 Serial 101
Permanent link to this record
 

 
Author Lovell, H.L.
Title Mine Water Treatment Control Type Journal Article
Year 1971 Publication Min. Congr. J. Abbreviated Journal
Volume (down) 57 Issue 6 Pages 83-&
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mine Water Treatment Control; Wos:A1971j677200018; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9264 Serial 102
Permanent link to this record
 

 
Author Sierra-Alvarez, R.
Title Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors Type Journal Article
Year 2006 Publication Water Sci. Technol. Abbreviated Journal
Volume (down) 54 Issue 2 Pages 179-185
Keywords mine water treatment
Abstract The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed V with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 Mg Cu2+vertical bar(-1); 10 mg Ni2+vertical bar(-1), 10 mg Zn2+vertical bar(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation Cn rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors; Wos:000240449300024; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16943 Serial 106
Permanent link to this record
 

 
Author Arnekleiv, J.V.
Title Downstream Effects Of Mine Drainage On Benthos And Fish In A Norwegian River – A Comparison Of The Situation Before And After River Rehabilitation Type Journal Article
Year 1995 Publication Journal of Geochemical Exploration Abbreviated Journal
Volume (down) 52 Issue 1-2 Pages 35-43
Keywords mine water treatment
Abstract Parts of the Norwegian river Gaula are strongly polluted from former mining activity in the area. In the most polluted parts of the river the concentration levels of Cu and Zn in 1986-1987 were up to 155 mug l-1 and 186 mug l-1, respectively. In 1989 the spoil heaps in the mining area were covered with protective layers of moss-covered plastic. In 1991-1992 the concentration levels of Cu and Zn had decreased by 75% and 65%, respectively. Animal life in the polluted area seemed to be strongly affected by the trace metals in 1986-1987. The 1991-1992 results showed a marked increase in the number of species and in the number of individuals of each species of Ephemeroptera and Plecoptera, compared with the results from 1986-87. Good correlations were found between the concentrations of Cu in the water and both the number of species and the number of individuals of Ephemeroptera and Plecoptera. Analysis of the species Baetis rhodani, Diura nanseni and Rhyacophila nubila showed an average total dry weight content of Cu up to 264 mug g-1, of Zn up to 1930 mug g-1 and of Cd up to 16 mug g-1. The contents of the three trace metals were significantly different from one species to another and in part between the stations for each species. In 1987 trout died after an exposure of one to two days on three test sites in the river, whereas in 1991-1992 40-75% of the trout survived an exposure period of several weeks at two of the sites. Electrofishing in 1991-1992 indicated recolonization of trout in the lower parts of the former affected and uninhabitable area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Downstream Effects Of Mine Drainage On Benthos And Fish In A Norwegian River – A Comparison Of The Situation Before And After River Rehabilitation; Wos:A1995qp96600005; Times Cited: 2; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17175 Serial 88
Permanent link to this record