toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baker, K.A.; Fennessy, M.S.; Mitsch, W.J. url  openurl
  Title Designing wetlands for controlling coal mine drainage: an ecologic- economic modelling approach Type Journal Article
  Year 1991 Publication Ecological Economics Abbreviated Journal  
  Volume (down) 3 Issue 1 Pages 1-24  
  Keywords mine drainage economic cost iron removal simulation model ecotechnology modelling approach treatment efficiency wetland design wastewater treatment USA Alabama USA Tennessee USA Ohio  
  Abstract A simulation model is developed of the efficiency and economics of an application of ecotechnology – using a created wetland to receive and treat coal mine drainage. The model examines the role of loading rates of iron on treatment efficiencies and the economic costs of wetland versus conventional treatment of mine drainage. It is calibrated with data from an Ohio wetland site and verified from multi-site data from Tennessee and Alabama. The model predicts that iron removal is closely tied to loading rates and that the cost of wetland treatment is less than that of conventional for iron loading rates of approximately 20-25 g Fe m “SUP -2” day “SUP -1” and removal efficiencies less than 85%. A wetland to achieve these conditions would cost approximately US$50 000 per year according to the model. When higher loading rates exist and higher efficiencies are needed, wetland systems are more costly than conventional treatment. -Authors  
  Address Third author School of Natural Resources & Environmental Biology Program, Ohio State Univ., Columbus, OH 43210-1085, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium  
  Area Expedition Conference  
  Notes Mar.; Designing wetlands for controlling coal mine drainage: an ecologic- economic modelling approach; (0882174); 91h-08506; Using Smart Source Parsing pp; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10684.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17570 Serial 38  
Permanent link to this record
 

 
Author Aston, W.M. openurl 
  Title Acid mine drainage; the problem, the treatment, the cost Type Journal Article
  Year 1973 Publication Green Lands Quarterly Abbreviated Journal  
  Volume (down) 3 Issue 3 Pages 14-15  
  Keywords acid mine drainage; environment; ferric hydroxide; inorganic acids; pyrite; reclamation; sulfides; sulfuric acid 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0271-0110 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage; the problem, the treatment, the cost; 1980-014546; United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6844 Serial 474  
Permanent link to this record
 

 
Author Rodiek, J.; Verma, T.R.; Thames, J.L. url  openurl
  Title Disturbed land rehabilitation in Lynx Creek watershed Type Journal Article
  Year 1975 Publication Landscape and Planning Abbreviated Journal  
  Volume (down) 2 Issue Pages 265-282  
  Keywords  
  Abstract Rodiek, J., Verma, T.R. and Thames, J.L., 1976. Disturbed land rehabilitation in Lynx Creek Watershed. Landscape Plann., 2: 265-282. The Lynx Creek Watershed is located on the Prescott National Forest about 8 km south of Prescott, Arizona. The watershed, with an area of 7304 ha, has experienced intensive copper and gold mining activities in the past. Approximately 13% of the area still consists of patented mining claims (mainly copper). There are numerous abandoned mine shafts, waste dumps and mine tailings in the area. Past mining activities in the watershed have caused significant deterioration in water quality within and downstream from the mining sites. Mine drainage includes water flowing from mine shafts, surface runoff and seepage from mining dumps. Drainage from the numerous old mining sites contributes to the toxic mineral and sediment pollution of the water resources in the area. The pollutants in the form of dissolved, suspended or other solid mineral wastes and debris, enter in the streams of ground water. Aquatic life and recreation potential of the watershed is greatly reduced by the water pollution problem from the abandoned mines. The pollutants from the abandoned mines enter into Lynx Lake which is located 10 km southeast of Prescott. Lynx Lake, a trout fisheries lake, was created by a dam built in 1963 by the Arizona Game and Fish Department. The lake is 22 surface hectares in size with the storage capacity of 1.85 x 106 m3. The average yearly flow of sediment into the lake is 2900 m3. The sediment is slightly acidic and has a high concentration of copper, manganese, iron, zinc, and sulfates. The Sheldon dump and tailings pond are considered two major sources of pollution. Increasing need to direct additional attention toward mineral related problems made it necessary to coordinate U.S. Forest Service efforts with others involved in mining and reclamation. The Forest Service started SEAM (Surface Environment And Mining) in 1972 to coordinate interagency reclamation efforts. The Sheldon Mine dump and tailings pond were undertaken as a reclamation project through the coordinated efforts of the Forest Service, and the School of Renewable Natural Resources, University of Arizona at Tucson. The project is aimed at reclaiming some of the abandoned spoils in the Lynx Creek watershed and monitoring of water quality in the creek to evaluate the effectiveness of reclamation procedures. The reclamation approach includes recontouring, revegetating, drainage control and visual impact modification activities. The results to date have been encouraging. There was an excellent vegetation cover established within 5 weeks of seeding. Runoff and sediment control on the regraded slopes seemed quite effective. The methodology and technological experience gained from the reclamation project will provide invaluable information for reclaiming any abandoned mining sites within the Ponderosa Pine Ecosystem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Disturbed land rehabilitation in Lynx Creek watershed; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17284 Serial 35  
Permanent link to this record
 

 
Author Younger, P.L. openurl 
  Title Minewater treatment using wetlands Type Journal Article
  Year 1997 Publication Water and Environment Manager Abbreviated Journal  
  Volume (down) 2 Issue 4 Pages 11  
  Keywords Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) wetlands mine drainage water treatment  
  Abstract Experiences gained by the UK Mining Industry and effluent treatment companies in theuse of wetlands for treating minewaters are discussed. Discharges from abandoned mines is a major cause of freshwater pollution in some regions. Key topics relating to the use of wetlands for minewater treatment will be discussed at a CIWEM conference in Newcastle on 5 September 1997.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Minewater treatment using wetlands; 0283405; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10624 Serial 200  
Permanent link to this record
 

 
Author Stark, L.R.; Williams, F.M. openurl 
  Title The roles of spent mushroom substrate for the mitigation of coal mine drainage Type Journal Article
  Year 1994 Publication Compost Science and Utilization Abbreviated Journal  
  Volume (down) 2 Issue 4 Pages 84-94  
  Keywords acid mine drainage rehabilitation coal mining spent mushroom substrate 3 Geology  
  Abstract Spent mushroom substrate (SMS) has been used widely in coal mining regions of the USA as the primary substrate in constructed wetlands for the treatment of coal mine drainage. In laboratory and mesocosm studies, SMS has emerged as one of the substrates for mine water treatment. Provided the pH of the mine water does not fall below 3.0, SMS can be used in the mitigation plan. However, neither Mn nor dissolved ferric Fe appears to be treatable using reducing SMS wetlands. Since after a few years much of the nonrefractive organic carbon in SMS wil have been decomposed and metabolized, carbon supplementation can significantly extend the life of the SMS treatment wetland and improve water treatment. -from Authors  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The roles of spent mushroom substrate for the mitigation of coal mine drainage; (1099507); 95k-07480; Using Smart Source Parsing pp; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17639 Serial 233  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: