|   | 
Details
   web
Records
Author
Title World first: Full-scale BioSure plant commissioned Type Journal Article
Year 2006 Publication Water Wheel Abbreviated Journal
Volume (up) 5 Issue 3 Pages 19-21
Keywords Waste Management and Pollution Policy geographical abstracts: human geography environmental planning (70 11 5) wastewater waste facility mine waste gold mine sewage treatment
Abstract ERWAT's Ancor Wastewater Treatment Works on the Far East Rand commissioned a 10 Ml/day full-scale plant to treat toxic mine-water from the Grootvlei gold mine using primary sewage sludge. The R15-million plant is treating sulphate rich acid mine drainage using the Rhodes BioSURE Process. First, the pumped mine-water is treated at a high-density separation (HDS) plant to remove iron and condition pH levels. Then it is pumped two km via a newly-constructed 10 Ml capacity pipeline to the Ancor works. This mine-water is then mixed together with primary sewage sludge in a mixing tank from where a splitter box directs the material to eight biological sulphate reducing reactors or bioreactors. The overflow water which is rich in sulphide is pumped through the main pump station to another mixing box. Here, iron slurry is mixed with the material before it is again divided between four reactor clarifiers for sulphide removal. The overflow water, now containing reduced sulphate levels and virtually no sulphide is pumped to Ancor's biofilters for removal of remaining Chemical Oxygen Demand (COD) and ammonia following the conventional sewage treatment process for eventual release into the Blesbokspruit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0258-2244 ISBN Medium
Area Expedition Conference
Notes Trade-; World first: Full-scale BioSure plant commissioned; 2865725; South-Africa; Geobase Approved no
Call Number CBU @ c.wolke @ 17495 Serial 494
Permanent link to this record
 

 
Author Wiessner, A.; Kuschk, P.; Buddhawong, S.; Stottmeister, U.; Mattusch, J.; Kästner, M.
Title Effectiveness of various small-scale constructed wetland designs for the removal of iron and zinc from acid mine drainage under field conditions Type Journal Article
Year 2006 Publication Engineering in Life Sciences Abbreviated Journal
Volume (up) 6 Issue 6 Pages 584-592
Keywords Grubenentwässerung biologische-Abwasserreinigung Pflanze Zink Eisen Schwermetallentfernung Nassverfahren Grundwasserströmung Langzeitversuch Regen Prozesswirkungsgrad Reaktionsgeschwindigkeit Binsen Hydrokultur
Abstract A system of planted and implanted small-scale SSF (subsurface flow) and SF (surface flow) constructed wetlands together with HP (hydroponic systems) were installed to compare the removal efficiencies of Fe and Zn from AMD (acid mine drainage) under long-term field conditions. Maximum removal of 94 % – 97 % (116 mg/m(exp 2)/d – 142 mg/m(exp 2)/d) for Fe and 69 % – 77 % (6.2 mg/m(exp 2)/d – 7.9 mg/m(exp 2)/d) for Zn was calculated for the planted soil systems. The planted SSF was most sensitive to heavy rain fall. Short-term increases of the metal concentration in the outflows, short-term breakdowns of the Fe removal and continual long-term breakdowns of the Zn removal were observed. In contrast to Zn removal, all wetland types are applicable for Fe removal with maximum removal in the range of 60 % – 98 %. Most of the removed Fe and Zn was transformed and deposited inside the soil bed. The amount absorbed by the plants (0.03 % to 0.3 %) and gravel-associated soil beds (0.03 % to 1.7 %) of the total input were low for both metals. The response of the planted SSF to rainfall suggests a remobilisation of metals accumulated inside the rhizosphere and the importance of buffering effects of the surface water layers of SF systems. The importance of plants for metal removal was shown.
Address UFZ – Umweltforschungszentrum Leipzig-Halle, DE; King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, TH
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-0240 ISBN Medium
Area Expedition Conference
Notes Effectiveness of various small-scale constructed wetland designs for the removal of iron and zinc from acid mine drainage under field conditions; 39931, BERG , 08.01.07; Words: 506; 200612 02721; 9 Seiten, 7 Bilder, 3 Tabellen, 36 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3PZI *biologischer Abbau und Bioremediation*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17578 Serial 211
Permanent link to this record
 

 
Author Totsche, O.; Fyson, A.; Kalin, M.; Steinberg Christian, E.W.
Title Titration curves: A useful instrument for assessing the buffer systems of acidic mining waters Type Journal Article
Year 2006 Publication ESPR Environmental Science and Pollution Research Abbreviated Journal
Volume (up) 13 Issue 4 Pages 215-224
Keywords Abwasseraufbereitung Bergbau Titration Säuregehalt Grundwasser Pufferlösung Neutralisation Titrationskurve Bergbauabwasser
Abstract The acidification of mine waters is generally caused by metal sulfide oxidation, related to mining activities. These waters are characterized by low pH and high acidity due to strong buffering systems. The standard acidity parameter, the BNC (Base Neutralization Capacity), is determined by endpoint titration, and reflects a cumulative parameter of both hydrogen ions and all buffering systems, but does not give information on the individual buffer systems. It is demonstrated that a detailed interpretation of titration curves can provide information about the strength of the buffering systems. The buffering systems are of importance for environmental studies and treatment of acidic mining waters. Titrations were carried out by means of an automatic titrator using acidic mining waters from Germany and Canada. The curves were interpreted, compared with each other, to endpoint titration results and to elemental concentrations contained therein. The titration curves were highly reproducible, and contained information about the strength of the buffer systems present. Interpretations are given, and the classification and comparison of acidic mining waters, by the nature and strength of their buffering systems derived from titration curves are discussed. The BNC-values calculated from the curves were more precise than the ones determined by the standard endpoint titration method. Due to the complex buffer mechanisms in acidic mining waters, the calculation of major metal concentrations from the shape of the titration curve resulted in estimates, which should not be confused with precise elemental analysis results. Conclusion. Titration curves provide an inexpensive, valuable and versatile tool, by which to obtain sophisticated information of the acidity in acidic water. The information about the strength of the present buffer systems can help to understand and document the complex nature of acidic mining water buffer systems. Finally, the interpretation of titration curves could help to improve treatment measurements and the ecological understanding of these acidic waters.
Address Leibniz-Institut für Gewässerökologie und Binnenfischerei, Berlin, DE; Boojum Research, Toronto, CA; Humboldt-Universität Berlin, DE
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344 ISBN Medium
Area Expedition Conference
Notes Titration curves: A useful instrument for assessing the buffer systems of acidic mining waters; 39481, BERG , 13.11.06; Words: 519; 200610 05282; 10 Seiten, 15 Bilder, 2 Tabellen, 39 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3BX *chemische Grundlagen* 3IFC *Messung und Prüfung chemischer Größen, chemische Analytik* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17580 Serial 224
Permanent link to this record
 

 
Author Akcil, A.; Koldas, S.
Title Acid Mine Drainage (AMD): causes, treatment and case studies Type Journal Article
Year 2006 Publication J. Cleaner Prod. Abbreviated Journal
Volume (up) 14 Issue 12-13 Pages 1139-1145
Keywords contamination effluents government industrial pollution industrial waste mining industry research initiatives wastewater treatment acid mine drainage environmental problems mining industry government research initiatives contamination civil engineering mining quarrying activity environmental impact acid generating process acid drainage migration prevention measures effluent treatment chemical treatment biological treatment Manufacturing and Production Entwässern=Gelände Umweltbelastung Bauingenieurwesen Bergbau Sickerwasser Steinbruch Säureproduktion Neutralisation Bergbauindustrie technische Forschung Ingenieurswissenschaft Steinbruchabbau Acid Mine Drainage Mining Environmental Chemical and biological treatment
Abstract This paper describes Acid Mine Drainage (AMD) generation and its associated technical issues. As AMD is recognized as one of the more serious environmental problems in the mining industry, its causes, prediction and treatment have become the focus of a number of research initiatives commissioned by governments, the mining industry, universities and research establishments, with additional inputs from the general public and environmental groups. In industry, contamination from AMD is associated with construction, civil engineering mining and quarrying activities. Its environmental impact, however, can be minimized at three basic levels: through primary prevention of the acid-generating process; secondary control, which involves deployment of acid drainage migration prevention measures; and tertiary control, or the collection and treatment of effluent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage (AMD): causes, treatment and case studies; Science Direct Approved no
Call Number CBU @ c.wolke @ 17462 Serial 36
Permanent link to this record
 

 
Author Driussi, C.
Title Technological options for waste minimisation in the mining industry Type Journal Article
Year 2006 Publication J. Cleaner Prod. Abbreviated Journal
Volume (up) 14 Issue 8 Pages 682-688
Keywords mine water treatment
Abstract Just as the application of technology in mining processes can cause pollution, it can also be harnessed to minimise, and sometimes eliminate, mine-related contaminants. Waste minimisation can be achieved through decreased waste production, waste collection, waste recycling, and the neutralisation of pollutants into detoxified forms. This article reviews examples of how technology can be used to minimise air, water, land and noise pollution in the mining industry. (c) 2005 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Technological options for waste minimisation in the mining industry; Wos:000237749600002; Times Cited: 1; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16924 Serial 110
Permanent link to this record