|   | 
Details
   web
Records
Author Agency, U.S.E.P.; Development, O. of R. and
Title Active and semi-passive lime treatment of acid mine drainage at Leviathan Mine, California Type RPT
Year 2006 Publication Abbreviated Journal
Volume (up) Issue Pages 94
Keywords
Abstract
Address
Corporate Author Thesis
Publisher National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Place of Publication Cincinnati, OH Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mar; Active and semi-passive lime treatment of acid mine drainage at Leviathan Mine, California; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7171.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7171 Serial 62
Permanent link to this record
 

 
Author Edraki, M.
Title Post closure management of the Mt Leyshon Gold Mine – Water the integrator Type Journal Article
Year 2006 Publication Water in Mining 2006, Proceedings Abbreviated Journal
Volume (up) Issue Pages 233-242
Keywords mine water treatment
Abstract Mining at the Mt Leyshon Gold Mine in semi-arid north Queensland stopped in 2002. Newmont Australia has recently initiated a thorough post-closure water management study of the site by revisiting the existing information and conducting new water-related investigations. The focus of this paper. which is the first publication on post-closure environmental management of the site. is an overview of the site water quality in view of the sources and spatial distribution of polluted mine water, and also the performance of cover systems in controlling water flux though mine wastes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Post closure management of the Mt Leyshon Gold Mine – Water the integrator; Isip:000243724400032; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16925 Serial 150
Permanent link to this record
 

 
Author Nakazawa, H.
Title Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal
Volume (up) Issue Pages 373-381
Keywords mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production
Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-87339-642-1 ISBN Medium
Area Expedition Conference
Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17456 Serial 151
Permanent link to this record
 

 
Author Wolkersdorfer, C.
Title Tracer tests as a mean of remediation procedures in mines Type Journal Article
Year 2006 Publication Uranium in the Environment: Mining Impact and Consequences Abbreviated Journal
Volume (up) Issue Pages 817-822
Keywords mine water treatment
Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Consequently, the knowledge about the hydraulic behaviour of the mine water within a flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, although only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Tracer tests as a mean of remediation procedures in mines; Isip:000233396400084; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7590 Serial 153
Permanent link to this record
 

 
Author Zinck, J.
Title Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume (up) Issue Pages 2604-2617
Keywords mine water lime treatment high density sludge process co-disposal sludge stability pond disposal backfill leaching mine reclamation
Abstract Sludge management is an escalating concern as the inventory of sludge continues to grow through perpetual “pump and treat” of acidic waters at mine sites. Current sludge management practices, in general, are ad hoc and frequently do not adress long-term storage, and in some cases, long-term stability. While a variety of sludge disposal practices have been applied, many have not been fully investigated and monitoring data on the performance of these technologies is limited and not readily available. This paper discusses options for treatment sludge management including conventionale disposal technologies and options for reclamation of sludge areas.
Address
Corporate Author Thesis
Publisher Proceedings, International Conference of Acid Rock Drainage (ICARD) Place of Publication St. Louis Editor
Language Summary Language Original Title
Series Editor Series Title Icard 2006 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Disposal, reprocessing and reuse options for acidic drainage treatment sludge; 2; AMD ISI | Wolkersdorfer; 2 Abb. Approved no
Call Number CBU @ c.wolke @ 17455 Serial 184
Permanent link to this record