|   | 
Details
   web
Records
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
Year 2001 Publication J. Environ. Qual. Abbreviated Journal
Volume (up) 30 Issue 5 Pages 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume (up) 39 Issue 12 Pages 4606-4613
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record
 

 
Author Ciftci, H.; Akcil, A.
Title Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD) Type Journal Article
Year 2006 Publication Madencilik = The = Journal of the Chamber of Mining Engineers of Turkey Abbreviated Journal
Volume (up) 45 Issue 1 Pages 35-45
Keywords acid mine drainage biodegradation methods microorganisms oxidation pollutants pollution remediation sulfides 22, Environmental geology
Abstract Acidic mine drainage (AMD) is a serious environmental problem in mining areas throughout the world. AMD occurs as a result of the natural oxidation of sulfide minerals when they are exposed to oxygen and water during their disposal and storage at the mining areas. Because it includes low pH and high concentrations of dissolved metals and sulphates, AMD can potentially damage to the environment. If the formation of AMD can't be prevented and controlled, it must be collected and treated to remove acidity and reduce the concentration of heavy metals and suspended solids before its release to the environment. Different types of microorganisms in the treatment of AMD can play a very important role in the development and the application of microbiological prevention, control and treatment technologies. The purpose of this article is to give information about the passive biological methods used in the treatment and the control of AMD and the role of microorganisms in these methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-9416 ISBN Medium
Area Expedition Conference
Notes Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD); 2006-075215; References: 58 Turkey (TUR); GeoRef; Turkish Approved no
Call Number CBU @ c.wolke @ 16444 Serial 416
Permanent link to this record
 

 
Author Arnekleiv, J.V.; Storset, L.
Title Downstream effects of mine drainage on benthos and fish in a Norwegian river; a comparison of the situation before and after river rehabilitation Type Journal Article
Year 1995 Publication Heavy metal aspects of mining pollution and its remediation Abbreviated Journal
Volume (up) 52 Issue Pages 35-43
Keywords Chordata copper Europe experimental studies fluvial environment Gaula River metals Norway Pisces pollutants pollution reclamation Scandinavia trace metals Vertebrata Western Europe zinc 22, Environmental geology
Abstract Parts of the Norwegian river Gaula are strongly polluted from former mining activity in the area. In the most polluted parts of the river the concentration levels of Cu and Zn in 1986-1987 were up to 155 mu g l (super -1) and 186 mu g l (super -1) , respectively. In 1989 the spoil heaps in the mining area were covered with protective layers of moss-covered plastic. In 1991-1992 the concentration levels of Cu and Zn had decreased by 75% and 65%, respectively. Animal life in the polluted area seemed to be strongly affected by the trace metals in 1986-1987. The 1991-1992 results showed a marked increase in the number of species and in the number of individuals of each species of Ephemeroptera and Plecoptera, compared with the results from 1986-87. Good correlations were found between the concentrations of Cu in the water and both the number of species and the number of individuals of Ephemeroptera and Plecoptera. Analysis of the species Baetis rhodani, Diura nanseni and Rhyacophila nubila showed an average total dry weight content of Cu up to 264 mu g g (super -1) , of Zn up to 1930 mu g g (super -1) and of Cd up to 16 mu g g (super -1) . The contents of the three trace metals were significantly different from one species to another and in part between the stations for each species. In 1987 trout died after an exposure of one to two days on three test sites in the river, whereas in 1991-1992 40-75% of the trout survived an exposure period of several weeks at two of the sites. Electrofishing in 1991-1992 indicated recolonization of trout in the lower parts of the former affected and uninhabitable area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Downstream effects of mine drainage on benthos and fish in a Norwegian river; a comparison of the situation before and after river rehabilitation; 1995-033037; 9th international conference on Heavy metals in the environment, Toronto, ON, Canada, Sept. 12-17, 1993 Special Issue References: 23; illus. incl. 2 tables; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16683 Serial 30
Permanent link to this record
 

 
Author Mustikkamaki, U.-P.
Title Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation Type Journal Article
Year 2000 Publication Vuoriteollisuus = Bergshanteringen Abbreviated Journal
Volume (up) 58 Issue 1 Pages 44-47
Keywords acid mine drainage anaerobic environment bacteria biodegradation environmental analysis Europe filters Finland metals Outokummun Mine peat pollutants pollution reduction Scandinavia sediments sulfate ion Western Europe zinc 22, Environmental geology
Abstract Acid mine drainage (AMD) is one of the most serious environmental problems in the metal-mining industry. AMD is formed by the chemical and bacterial oxidation of sulphide minerals, and it is characterized by low pH values and high sulphate and metals content. The most common method to treat AMD is chemical neutralization. The chemical treatment requires high capital and operating costs and its use is problematic at the closed mines sites. Outokumpu has studied and used sulphate reducing bacteria (SRB) as an alternative method for the treatment of AMD. SRB existing in many natural anaerobic aqueous environments can reduce sulphate to sulphide which precipitates metals as extremely insoluble metal sulphides. Full scale experiments were begun in summer 1995 in the Ruostesuo open pit (depth 46 m) by adding liquid manure as a source of bacteria and press-juice as a growth substrate. The average Zn content of the whole column has decreased from 3,5 mg/l to 0,8 mg/l and below 25 m zinc is 0 mg/l. Similar results have been reached with nickel in the Kotalahti old nickel mine, where bacteria were brought in 1996. We have found that the same bacterial mechanism acts in peat-limestone filters, which Outokumpu has built at several mine sites since 1993.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-9317 ISBN Medium
Area Expedition Conference
Notes Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation; 2001-069868; illus. incl. 3 tables Finland (FIN); GeoRef; Finnish Approved no
Call Number CBU @ c.wolke @ 16560 Serial 291
Permanent link to this record