toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Peterson, D.E.; Kindley, M.J. openurl 
  Title The Golden Cross Mine water management system Type Journal Article
  Year 1994 Publication New Zealand Mining Abbreviated Journal  
  Volume 14 Issue Pages 15-21  
  Keywords Australasia Coromandel Peninsula cyanides gold ores Golden Cross Mine metal ores mines New Zealand North Island tailings Waihi New Zealand waste water water management water treatment 30, Engineering geology  
  Abstract Because of its location in the sensitive Coromandel Peninsula, strict water management and environmental requirements had to be met on the Golden Cross Mine Project. This led to the development of new technologies for cyanide recovery and the adoption of advanced water management and water treatment systems. This paper discusses the water management and treatment system adopted for contaminated water at Golden Cross. While permit discharge levels must be and are met for mine discharge waters, the ultimate success of the water management system is demonstrated by the results downstream; biological surveys show no changes to the resident aquatic life in the river.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1170-4209 ISBN Medium  
  Area Expedition Conference  
  Notes The Golden Cross Mine water management system; 1998-055867; New Zealand (NZL); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16732 Serial 271  
Permanent link to this record
 

 
Author Perry, A.; Kleinmann, R.L.P. openurl 
  Title The use of constructed wetlands in the treatment of acid mine drainage Type Journal Article
  Year 1991 Publication Natural Resources Forum Abbreviated Journal  
  Volume 15 Issue 3 Pages 178-184  
  Keywords quality standard water treatment constructed wetland pond system acid mine drainage USA 1 Geography  
  Abstract US government regulations require that all effluents from industrial operations, including mining, meet certain water quality standards. Constructed wetlands have proven to be useful in helping to attain those standards. Application of this biotechnology to mine water drainage can reduce water treatment costs and improve water quality in streams and rivers adversely affected by acidic mine water drainage from abandoned mines. Over 400 constructed wetland water treatment systems have been built on mined lands largely as a result of research by the US Bureau of Mines. Wetlands are passive biological treatment systems that are relatively inexpensive to construct and require minimal maintenance. Chemical treatment costs are reduced sufficiently to repay the cost of construction in less than a year. The mine waste water is typically treated in a series of excavated ponds that resemble small marsh areas. The ponds are engineered to facilitate bacterial oxidation of iron. Ideally, the water then flows through a composted organic substrate supporting a population of sulphate-reducing bacteria which raises the pH. Constructed wetlands in the US are described – their history, functions, construction methodologies, applicabilities, limitations and costs. -Authors  
  Address US Department of the Interior, Bureau of Mines, 2401 E Street, NW Washington, DC 20241, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The use of constructed wetlands in the treatment of acid mine drainage; (0895945); 92h-01979; Using Smart Source Parsing pp; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17569 Serial 272  
Permanent link to this record
 

 
Author Parker, G.; Noller, B.; Waite, T.D. isbn  openurl
  Title Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia Type Book Chapter
  Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Australasia Australia buffers carbonate ion geochemistry Northern Territory Australia Pine Creek Geosyncline pollution pyrite sulfides surface water tropical environment water quality 22, Environmental geology  
  Abstract Surface waters in the Pine Creek Geosyncline (located in Australia's “Top End”, defined as the area of Australia north of 15 degrees S) are characterized by their low carbonate buffering capacity. These waters are buffered by silicate weathering and hence are slightly acidic, ranging in pH from 4.0 to 6.0. The Pine Creek Geosyncline contains most of the Top Ends' economic mineral deposits and characteristically shows no correlation between carbonate minerals and sulfidic orebodies hosting gold deposits (unlike uranium deposits). Thus many gold mines do not have ready access to carbonate minerals for buffering acid mine drainage (AMD). It is possible that locally available fast-weathering silicate minerals may be used to buffer AMD seeps. The buffering intensity of silicate minerals exceeds that of carbonate minerals, but their slow dissolution kinetics has ensured that these materials have received little attention in treating AMD. In addition, carbonate mineral dissolution is retarded when contacted with intense AMD solutions due to the formation of surface coatings of iron minerals. The lower pH range of silicate mineral dissolution may prevent the formation of such coatings. The Pine Creek Geosyncline consists of a complex geochemistry, and a number of fast-weathering silicate minerals have been noted in various areas. The difficulty in assessing such minerals for use in buffering AMD is the lack of kinetic data available under conditions prevalent AMD (i.e., low pH solutions saturated with aluminium and silica). This study sets out to evaluate the applicability of using such minerals to treat AMD surface seeps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0886670470 Medium  
  Area Expedition Conference  
  Notes Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia; GeoRef; English; 2000-048644; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 36; illus. incl. 2 tables Approved no  
  Call Number CBU @ c.wolke @ 16594 Serial 273  
Permanent link to this record
 

 
Author Palmer, J.P. openurl 
  Title Reclamation and Decontamination of Metalliferous Mining Tailings Type Journal Article
  Year 1990 Publication Int. J. Mine Water Abbreviated Journal  
  Volume 9 Issue 1-4 Pages 223-235  
  Keywords Britain tailings metals land reclamation environmental damage ground water surface water Wales treatment options  
  Abstract Parts of Britain have large accumulations of metalliferous tailings derived from mining in the lath, 19th and 20th centuries. These tailings were never subject to land reclamation schemes at the time of mining and are situated very close to water courses. They cause considerable environmental damage in terms of contamination of soils, dust blow and pollution of water courses and groundwater. In some parts of the country mine drainage is a major part of river pollution. In recent years, particularly in Wales, efforts have been made to “clean up” these sites. This has involved using techniques to isolate and contain the spoil, diversion of water courses, and the installation of water treatment facilities and drainage and the establishment of a vegetation cover. Research is also being initiated to investigate ways of decontaminating these metalliferous spoils as an alternative to using covering systems to reclaim them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-6960 ISBN Medium  
  Area Expedition Conference  
  Notes Reclamation and Decontamination of Metalliferous Mining Tailings; 1; FG 2 Abb., 3 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17405 Serial 274  
Permanent link to this record
 

 
Author Oster, A. openurl 
  Title Relocating the Inde river – Post-mining design of a river meadow landscape. Verlegung des Flusses Inde – Bergbauliche Gestaltung einer Flussauenlandschaft Type Journal Article
  Year 2005 Publication World of Mining Surface & Underground Abbreviated Journal  
  Volume 57 Issue 5 Pages 346-351  
  Keywords Fluss=Gewässer Verlegen Braunkohlenbergbau Tagebau Ökologie Umweltschutz Landschaftsgestaltung Wasserbau Flutung Deutschland Flussverlegung Wiedernutzbarmachung  
  Abstract Vor dem Hintergrund einer planmäßigen Tagebauentwicklung muss der das Gewinnungsfeld in Nord-Süd-Richtung durchquerende Fluss Inde Ende 2005 bergbaulich in Anspruch genommen werden. Als Ersatz wurde auf Grundlage des Planfeststellungsbeschlusses vom 10.09.1998 eine neue Inde auf einer Länge von rd. 12 km erstellt. Rund 10 km der neuen Inde liegt innerhalb des Tagebaufeldes. Hierzu musste eine Flusslandschaft angelegt werden. Im Gegensatz bisher anthropogen geprägten Inde, ist eine naturnahe und weiträumige Flusslandschaft vorgesehen. Die Gestaltung soll, in Verbindung mit den zahlreichen eingebrachten Landschaftselementen wie Flutmulden, Altarmansätzen und Kolke, eine artenreiche und ökologisch hochwertige Auenlandschaft ermöglichen. Die Flutung der neuen Inde erfolgt auf Grundlage eines dreiphasigen Gewässerumschlusskonzeptes. Im Anschluss an die Flutung soll ein Monitoring- Programm zur Dokumentation der hydrodynamischen, morphologischen und landschaftsökologischen Entwicklung der Indeflur durchgeführt werden. Against the background of the scheduled eastward development of the Inden opencast mine, the Inde river which runs there must make way for mining operations at the end of 2005. Prior to this, as a replacement for the riverbed, which is some 4.5 km long, a riverscape has had to be created as a bypass in the west, mainly within the scope of rehabilitation measures. The model built for this purpose based on historical records provides for a close-to-nature and spacious riverscape with hand- and soft-wood meadows, unlike the anthropogenically marked Inde of today, with a meandering mean water bed. This design, in conjunction with the many installed landscape elements, like flood hollows, creeks and potholes, aims at creating a diverse and ecologically high-quality meadow landscape. The main factors impacting the river's route were the opencast mine's geometry and progress, as well as the planned and existing utilization of the land surfaces outside the opencast field. Besides these constraints, there were stipulated vertical points due to hydraulic requirements. The Inde plains, taking account of the planned route, were created on the basis of a design template, which provides for a stable level, a sealing layer and a cultivatable meadow substrate layer. In addition, the meadow substrate layer protects the sealing layer from erosion thanks to its medium- and coarse-grained gravel content. The Inde was constructed in the opencast field within the scope of rehabilitation in spreader operations, meaning that it was possible to dump the material to be installed in line with the design template and given elevations. The flooding of the 'new' Inde was based on a three-phase waterway rerouting concept and provided for increasing discharge quantities. This enabled a bottom covering layer to be formed successively, and ailowed the aquatic fauna to gently adapt to the changed living conditions and further seed material to be flushed in.  
  Address Inden Opencast Mine, RWE Power, Eschweiler, DE  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-2408 ISBN Medium  
  Area Expedition Conference  
  Notes Relocating the Inde river – Post-mining design of a river meadow landscape. Verlegung des Flusses Inde – Bergbauliche Gestaltung einer Flussauenlandschaft; 36448, BERG , 19.12.05; Words: 652; 200511 07020; 6 Seiten, 13 Bilder, 5 Quellen 3UX *Umweltbelastung, technik* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no  
  Call Number CBU @ c.wolke @ 17581 Serial 275  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: