|   | 
Details
   web
Records
Author Wolkersdorfer, C.
Title Tracer tests as a mean of remediation procedures in mines Type Journal Article
Year 2006 Publication Uranium in the Environment: Mining Impact and Consequences Abbreviated Journal
Volume Issue Pages 817-822
Keywords mine water treatment
Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Consequently, the knowledge about the hydraulic behaviour of the mine water within a flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, although only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Tracer tests as a mean of remediation procedures in mines; Isip:000233396400084; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7590 Serial 153
Permanent link to this record
 

 
Author Maniatis, T.
Title Biological removal of arsenic from tailings pond water at Canadian mine Type Journal Article
Year 2005 Publication Arsenic Metallurgy Abbreviated Journal
Volume Issue Pages 209-214
Keywords mine water treatment
Abstract Applied Biosciences has developed a biological technology for removal of arsenic, nitrate, selenium, and other metals from mining and industrial waste waters. The ABMet((R)) technology was implemented at a closed gold mine site in Canada for removing arsenic from tailings pond water. The system included six bioreactors that began treating water in the spring of 2004. Design criteria incorporated a maximum flow of 567 L/min (150 gallons per minute) and water temperatures ranging from 10 degrees C to 15 degrees C. Influent arsenic concentrations range from 0.5 mg/L to 1.5 mg/L. The ABMet((R)) technology consistently removes arsenic to below detection limits (0.02 mg/L). Data from the full scale system will be presented, as well as regulatory requirements and site specific challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological removal of arsenic from tailings pond water at Canadian mine; Isip:000228449400016; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16976 Serial 154
Permanent link to this record
 

 
Author Ye, Z.H.
Title Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002 Type Journal Article
Year 2004 Publication Wetlands Ecosystems in Asia: Function and Management Abbreviated Journal
Volume 1 Issue Pages 413-434
Keywords mine water treatment
Abstract A constructed wetland system in Guangdong Province, South of China has been used for treating Pb/Zn mine discharge since 1984. In this chapter, the performance of this system in the purification of mine discharge, metal accumulation in different ecological compartments and ecological succession within the system during the period of 1984-2002 has been reviewed. The data show that the wetland system not only effectively remove metals (mainly Pb, Zn, Cd and Cu) and total suspended solids from the mine discharge over a long period leading to significant improvement in water quality, but also gradually increase diversity and abundance of living organisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002; Isip:000226088800023; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16997 Serial 155
Permanent link to this record
 

 
Author Gusek, J.J.
Title Design challenges for large scale sulfate reducing bioreactors Type Journal Article
Year 2005 Publication Contaminated Soils, Sediments and Water: Science in the Real World, Vol 9 Abbreviated Journal
Volume 9 Issue Pages 33-44
Keywords mine water treatment
Abstract The first large-scale (1,200 gpm capacity), sulfate-reducing; bioreactor (SRBR) was constructed in 1996 to treat water from an underground lead mine in Missouri. Other large-scale SRBR systems have been built elsewhere since then. This technology holds much promise for economically treating heavy metals and has progressed steadily from the laboratory to industrial applications. Scale-up challenges include: designing for seasonal temperature variations, minimizing short circuits, changes in metal loading rate s, storm water impacts, and resistance to vandalism. However, the biggest challenge may be designing for the progressive biological degradation of the organic substrate and its effects on the hydraulics of the SRBR cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Design challenges for large scale sulfate reducing bioreactors; Isip:000225303300004; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16959 Serial 156
Permanent link to this record
 

 
Author Naugle, W.K.
Title Remediation of the Eagle Mine superfund site: a biological success story Type Journal Article
Year 2003 Publication Tailings and Mine Waste '03 Abbreviated Journal
Volume Issue Pages 481-485
Keywords mine water treatment
Abstract Remediation of the Eagle Mine Superfund Site began in 1988. Remedial action included: bulk-heading adits, flooding mine workings; constructing diversion ditches around waste rock; consolidating mine wastes in an on-site tailings pile; capping the tailings pile with a multi-layer, engineered cap; and revegetating disturbed areas with native plants. Flooding the mine workings resulted in unacceptable seepage into the Eagle River in late 1989. A water treatment plant was constructed to collect mine seepage and groundwater at the main tailings pile. In October 2001, construction of the remedy was declared “complete” and the site is now in the operation, maintenance and monitoring phase. A strong downward trend in zinc and cadmium concentrations in the Eagle River has occurred and, trout and macroinvertebrate populations have increased. Biological data are being used to establish water quality standards for the Eagle River.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Remediation of the Eagle Mine superfund site: a biological success story; Isip:000186710100058; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17020 Serial 157
Permanent link to this record