|   | 
Details
   web
Records
Author Mustikkamaki, U.-P.
Title Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation Type Journal Article
Year 2000 Publication Vuoriteollisuus = Bergshanteringen Abbreviated Journal
Volume 58 Issue 1 Pages 44-47
Keywords acid mine drainage anaerobic environment bacteria biodegradation environmental analysis Europe filters Finland metals Outokummun Mine peat pollutants pollution reduction Scandinavia sediments sulfate ion Western Europe zinc 22, Environmental geology
Abstract Acid mine drainage (AMD) is one of the most serious environmental problems in the metal-mining industry. AMD is formed by the chemical and bacterial oxidation of sulphide minerals, and it is characterized by low pH values and high sulphate and metals content. The most common method to treat AMD is chemical neutralization. The chemical treatment requires high capital and operating costs and its use is problematic at the closed mines sites. Outokumpu has studied and used sulphate reducing bacteria (SRB) as an alternative method for the treatment of AMD. SRB existing in many natural anaerobic aqueous environments can reduce sulphate to sulphide which precipitates metals as extremely insoluble metal sulphides. Full scale experiments were begun in summer 1995 in the Ruostesuo open pit (depth 46 m) by adding liquid manure as a source of bacteria and press-juice as a growth substrate. The average Zn content of the whole column has decreased from 3,5 mg/l to 0,8 mg/l and below 25 m zinc is 0 mg/l. Similar results have been reached with nickel in the Kotalahti old nickel mine, where bacteria were brought in 1996. We have found that the same bacterial mechanism acts in peat-limestone filters, which Outokumpu has built at several mine sites since 1993.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-9317 ISBN Medium
Area Expedition Conference
Notes Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation; 2001-069868; illus. incl. 3 tables Finland (FIN); GeoRef; Finnish Approved no
Call Number CBU @ c.wolke @ 16560 Serial 291
Permanent link to this record
 

 
Author Murdock, D.J.; Fox, J.R.W.; Bensley, J.G.
Title Treatment of acid mine drainage by the high density sludge process Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal
Volume Issue Pages 241-249
Keywords acid mine drainage; concentration; oxidation; pollutants; pollution; remediation; solute transport; sulfides; waste water; water quality 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by the high density sludge process; GeoRef; English; 2007-045177; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 10; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 6584 Serial 292
Permanent link to this record
 

 
Author Mosher, J.
Title Heavy-metal sludges as smelter feedstock Type Journal Article
Year 1994 Publication Engineering and Mining Journal Abbreviated Journal
Volume 195 Issue 9 Pages 25-30
Keywords Metals Mining Groundwater Pollution USA Colorado California Gulch 3 Geology
Abstract Many industries produce a waste-water stream high in heavy metals. Disposal of sludge from these wastewater treatment plants has become increasingly difficult and expensive in the US due to passage of the Resource Conservation and Recovery Act's 'land disposal ban' for hazardous wastes. Innovative methods can be found for dealing with such wastes. For example, in performing a mandated clean-up under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Asarco's California Gulch water-treatment plant in Colorado meets CERCLA clean-up goals while using a waste water treatment sludge as a smelter feedstock, recovering incidental saleable metals, and producing non-hazardous products. In this plant, Asarco treats acidic mine-drainage water having high metal concentrations and uses the waste sludge generated as a lime replacement in lead smelting operations. -Author
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Heavy-metal sludges as smelter feedstock; (1084960); 95t-4357; Using Smart Source Parsing pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17563 Serial 293
Permanent link to this record
 

 
Author Morfitt, B.; Brewer, W.; Frobel, R.
Title Cleaning up the Summitville Mine Superfund Site Type Journal Article
Year 1998 Publication Geotechnical Fabrics Report Abbreviated Journal
Volume 16 Issue 5 Pages 38-41
Keywords Geomembran Verbundstoff Abdichten Erdaufschüttung Erosion Schutz Bentonit Bergwerk Netz
Abstract A multi-layered geosynthetic system that includes geosynthetic-clay liners (GCL) and a geonet-composite drain (GNGC) is being used to cap and stabilize a 178000 m(exp 2) heap-leach pad at the Summitville Mine Superfund Site in Colorado. Selected were materials on the basis of design requirements for permeability, strength, extreme site conditions and cost. The Summitville cleanup called for a heap-leach pad cap to provide a barrier that would prevent precipitation from infiltrating the pad material. This long-term remediation prevents the pile from becoming saturated and allowing water to overflow the downslope dike, which could cause instability to dike and pond. Three geosynthetic alternatives were proposed. The contractor, that was awarded the heap leach pad, phase 2 contract, decided for a geosynthetic clay liner cap placed directly on the redesigned slopes. Bentofix NW-8 was used as GCL and TexNet TN was selected as the geocomposite drain. Conformance testing, subgrade preparation review, geosynthetic installation/repair inspection and review of cover material placement, performed by independent construction-quality assurance, showed that GCL is a well-suited cap material for heap leach pads, where high wind, cold temperatures rain and high altitude hinder construction. The robust geosynthetic allowed on-site coarse material to be used in the subgrade and cover layer, which saved the cost of importing more expensive bedding material.
Address US Bureau of Reclamation, Denver, US; Advanced Terra Testing, Lakewood, US; R K Frobel & Associates, Lakewood, US
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0882-4983 ISBN Medium
Area Expedition Conference
Notes Cleaning up the Summitville Mine Superfund Site; 16974, BERG , 16.09.98; Words: 376; T9808 0249 178; 4 Seiten, 4 Bilder, 1 Tabelle 3TMP *intelligente Textilien, technische Textilien*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17599 Serial 294
Permanent link to this record
 

 
Author Mohan, D.; Chander, S.
Title Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent Type Journal Article
Year 2006 Publication J. Hazard. Mater. Abbreviated Journal
Volume 137 Issue 3 Pages 1545-1553
Keywords Geobase: Related Topics geobase: related topics (901) acid mine drainage adsorption ion iron sulfide lignite wastewater water treatment
Abstract Acid mine drainage (AMD), has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove and recover metal ions from acid mine drainage (AMD) by using lignite, a low cost sorbent. Lignite has been characterized and used for the AMD treatment. Sorption of ferrous, ferric, manganese, zinc and calcium in multi-component aqueous systems was investigated. Studies were performed at different pH to find optimum pH. To simulate industrial conditions for acid mine wastewater treatment, all the studies were performed using single and multi-columns setup in down flow mode. The empty bed contact time (EBCT) model was used for minimizing the sorbent usage. Recovery of the metal ions as well as regeneration of sorbent was achieved successfully using 0.1 M nitric acid without dismantling the columns. < copyright > 2006 Elsevier B.V. All rights reserved.
Address D. Mohan, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States dm_1967@hotmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Medium
Area Expedition Conference
Notes Oct 11; Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent; 2919875; Netherlands 56; Geobase Approved no
Call Number CBU @ c.wolke @ 17634 Serial 295
Permanent link to this record