|   | 
Details
   web
Records
Author Diamond, J.M.; Bower, W.; Gruber, D.
Title Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River Type Journal Article
Year 1993 Publication Environ. Manage. Abbreviated Journal
Volume 17 Issue Pages 14
Keywords Acid mine drainage Potomac River Reservoir macroinvertebrate Fish Mayflies
Abstract The US Department of the Army, Baltimore District Corps of Engineers, oversees a long-term monitoring study to assess and evaluate effects of the Jennings-Randolph reservoir on biota in the North Branch Potomac River. The reservoir was intended, in part, to mitigate effects of acid mine drainage originating in upstream and headwater areas. The present study assessed recovery of benthos and fish in this system, six years after completion of the reservoir. Higher pH and lower iron and sulfate concentrations were observed upstream of the reservoir compared to preimpoundment conditions, suggesting better overall water quality in the upper North Branch. Water quality improved slightly directly downstream of the reservoir. However, the reservoir itself was poorly colonized by macrophytes and benthic organisms, and plankton composition suggested either metal toxicity and/or nutrient limitation. One large tributary to the North Branch and the reservoir (Stony River) was shown to have high (and possibly toxic) levels of manganese, iron, zinc, and aluminum due to subsurface coal mine drainage. Macroinvertebrate diversity and number of taxa were higher in sites downstream of the reservoir in the present study. Compared with previous years, the present study suggested relatively rapid recovery in the lower North Branch due to colonization from two major unimpacted tributaries in this system: Savage River and South Branch Potomac. Abundance of certain mayfly species across sites provided the most clear evidence of longitudinal gradients in water quality parameters and geomorphology. Fish data were consistent with macroinvertebrate results, but site-to-site variation in species composition was greater. Data collected between 1982 and 1987 suggested that certain fish species have unsuccessfully attempted to colonize sites directly downstream of the reservoir despite the more neutral pH water there. Our results show that recovery of biota in the North Branch Potomac was attributed to decreased acid inputs from mining operations and dilution from the Savage River, which contributed better water quality. Continued improvement of North Branch Potomac biota may not be expected unless additional mitigation attempts, either within the reservoir or upstream, are undertaken.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0364-152x ISBN Medium
Area Expedition Conference
Notes Feb.; Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River; New York, NY ; Heidelberg ; Berlin : Springer; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7016.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7016 Serial 79
Permanent link to this record
 

 
Author Dugan, P.R.
Title Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions Type Journal Article
Year 1987 Publication Biotechnol. Bioeng. Abbreviated Journal
Volume 29 Issue 1 Pages 6
Keywords mine water treatment Chemistry Biochemistry and Biotechnology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3592 ISBN Medium
Area Expedition Conference
Notes Jan; Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions; New York, NY [u.a.] : Wiley; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7028.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7028 Serial 80
Permanent link to this record
 

 
Author Zinck, J.M.; Aube, B.C.
Title Optimization of lime treatment processes Type Journal Article
Year 2000 Publication CIM Bull. Abbreviated Journal
Volume 93 Issue 1043 Pages 98-105
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage buffering lime Canada
Abstract Lime neutralization technology is widely used in Canada for the treatment of acid mine drainage and other acidic effluents. In many locations, improvements to the lime neutralization process are necessary to achieve a maximum level of sludge densification and stability. Conventional lime neutralization technology effectively removes dissolved metals to below regulated limits. However, the metal hydroxide and gypsum sludge generated is voluminous and often contains less than 5% solids. Despite recent improvements in the lime neutralization technology, each year, more than 6 700 000 m3 of sludge are generated by treatment facilities operated by the Canadian mining industry. Because lime neutralization is still seen as the best available approach for some sites, sludge production and stability are expected to remain as issues in the near future. Several treatment parameters significantly impact operating costs, effluent quality, sludge production and the geochemical stability of the sludge. Studies conducted both at CANMET and NTC have shown that through minor modifications to the treatment process, plant operators can experience a reduction in operating costs, volume of sludge generated, metal release to the environment and liability. This paper discusses how modifications in plant operation and design can reduce treatment costs and liability associated with lime treatment.
Address J.M. Zinck, CANMET, Mining and Mineral Sciences Lab., Natural Resources Canada, Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Optimization of lime treatment processes; 2291672; Canada 17; Geobase Approved no
Call Number CBU @ c.wolke @ 17537 Serial 183
Permanent link to this record
 

 
Author Zinck, J.
Title Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume Issue Pages 2604-2617
Keywords mine water lime treatment high density sludge process co-disposal sludge stability pond disposal backfill leaching mine reclamation
Abstract Sludge management is an escalating concern as the inventory of sludge continues to grow through perpetual “pump and treat” of acidic waters at mine sites. Current sludge management practices, in general, are ad hoc and frequently do not adress long-term storage, and in some cases, long-term stability. While a variety of sludge disposal practices have been applied, many have not been fully investigated and monitoring data on the performance of these technologies is limited and not readily available. This paper discusses options for treatment sludge management including conventionale disposal technologies and options for reclamation of sludge areas.
Address
Corporate Author Thesis
Publisher Proceedings, International Conference of Acid Rock Drainage (ICARD) Place of Publication St. Louis Editor
Language Summary Language Original Title
Series Editor Series Title Icard 2006 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Disposal, reprocessing and reuse options for acidic drainage treatment sludge; 2; AMD ISI | Wolkersdorfer; 2 Abb. Approved no
Call Number CBU @ c.wolke @ 17455 Serial 184
Permanent link to this record
 

 
Author Ziemkiewicz, P.F.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Prevention of acid mine drainage by alkaline addition Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; alkalinity; Appalachians; coal; land use; leachate; leaching; mines; mitigation; North America; oxidation; pollution; preventive measures; pyrite; reclamation; sampling; sedimentary rocks; soils; spoils; sulfides; surface water; techniques; United States; water pollution; water quality; water treatment; weathered materials; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Prevention of acid mine drainage by alkaline addition; GeoRef; English; 2004-051146; Edition: 2 References: 18; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 6356 Serial 185
Permanent link to this record