|   | 
Details
   web
Records
Author Baskin, L.
Title Linear relationship between mine flow-acid load and influence of depositional environment Type (up) Book Chapter
Year 1979 Publication Underground coal mining symposium Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; Bell Gap Run; Blair County Pennsylvania; Cambria County Pennsylvania; environmental geology; ground water; hydrology; inorganic acids; iron; land use; Little Schuykill River; Loyalsock Creek; metals; Pennsylvania; pollution; programs; pyrite; Randolph County West Virginia; reclamation; rivers and streams; Roaring Creek; Schuylkill County Pennsylvania; statistical analysis; sulfides; sulfuric acid; Sullivan County Pennsylvania; surveys; Swatara Creek; treatment; United States; waste disposal; watersheds; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher McGraw-Hill Place of Publication New York City Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Linear relationship between mine flow-acid load and influence of depositional environment; GeoRef; English; 1981-015370; Coal conference and expo V ; Underground coal mining symposium, Louisville, KY, United States, Oct. 23-25, 1979 References: 36; illus. incl. tables, sketch maps Approved no
Call Number CBU @ c.wolke @ 6819 Serial 465
Permanent link to this record
 

 
Author Cram, J.C.
Title Diversion well treatment of acid water, Lick Creek, Tioga County, PA Type (up) Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acid rain atmospheric precipitation carbonate rocks diversion wells Lick Creek limestone Pennsylvania pH pollution rain sedimentary rocks surface water Tioga County Pennsylvania United States water quality water treatment wells 22, Environmental geology
Abstract Diversion wells implement a fluidized bed of limestone for the treatment of acid water resulting from acid mine drainage or acid precipitation. This study was undertaken to better understand the operation of diversion wells and to define the physical and chemical factors having the greatest impact on the neutralization performance of the system. The study site was located near Lick Creek, a tributary stream of Babb Creek, near the Village of Arnot in Tioga County, Pennsylvania. Investigative methods included collection and analysis of site water quality and limestone data and field study of this as well as other diversion well sites. Analysis of data led to these general conclusions: The site received surface water influenced by three primary sources 1) precipitation, 2) mine drainage baseflow, and 3) melted snow. Water mostly influenced by precipitation events and mine drainage baseflow was more acidic than water influenced by melting snow conditions. The diversion wells were generally able to treat only half or less of the total stream flow of Lick Creek and under extremely high flow conditions the treatment provided was minimal. A range of flow conditions were identified which produced the best performance for the two diversion wells. Treatment produced by the system decreased through the loading cycle and increases to a maximum value after each weekly refilling of limestone. Fine grained sediment in the stream was found to be limestone of the same general composition as the material placed within the wells. Neutralization of acid water was largely due to microscopic particles rather than the limestone sediment discharged to the stream. Additional downstream buffering due to the limestone sediment physically discharged from the vessels was not apparent. Diversion well systems are inexpensive and simple to construct. In addition, the systems were found to be highly reliable and able to effectively treat acid water resulting from mine drainage and acid precipitation. Diversion wells provide better treatment when the treatment site is located at the source of the acidity (such as a mine discharge), rather than at the receiving stream. Systems should be designed with 15 to 20 feet of hydraulic head and the site must have year-round access. Diversion well systems require weekly addition of limestone gravel to the vessels to facilitate continual treatment. A great deal of commitment is necessary to maintain a diversion well system for long periods of time. These systems are more economical and require less attention that conventional chemical treatment of acid water. However, these systems require more attention that traditional passive treatment methods for treatment of acid, including mine drainage.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Pennsylvania State University at University Park, Place of Publication University Park Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Diversion well treatment of acid water, Lick Creek, Tioga County, PA; GeoRef; English; References: 49; illus. Approved no
Call Number CBU @ c.wolke @ 16652 Serial 411
Permanent link to this record
 

 
Author Dempsey, B.A.; Jeon, B.-H.
Title Characteristics of sludge produced from passive treatment of mine drainage Type (up) Journal Article
Year 2001 Publication Geochem.-Explor. Environ. Anal. Abbreviated Journal
Volume 1 Issue 1 Pages 89-94
Keywords acid mine drainage; aerobic environment; anaerobic environment; Appalachian Plateau; Appalachians; carbonate rocks; coagulation; compressibility; decontamination; density; drainage; filtration; geochemistry; Howe Bridge; Jefferson County Pennsylvania; limestone; mining geology; North America; passive systems; Pennsylvania; pH; pollution; ponds; rates; reclamation; sedimentary rocks; settling; sludge; slurries; suspended materials; United States; viscosity; wet packing density; wetlands; zeta-potential 22, Environmental geology
Abstract In the 1994 paper by Brown, Skousen & Renton it was argued that settleability and wet-packing density were the most important physical characteristics of sludge from treatment of mine drainage. These characteristics plus zeta-potential, intrinsic viscosity, specific resistance to filtration, and coefficient of compressibility were determined for several sludge samples from passive treatment sites and for several sludge samples that were prepared in the laboratory. Sludge from passive systems had high packing density, low intrinsic viscosity, low specific resistance to filtration and low coefficient of compressibility compared to sludge that was produced after addition of NaOH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Feb.; Characteristics of sludge produced from passive treatment of mine drainage; 2002-008382; References: 29; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5734 Serial 57
Permanent link to this record
 

 
Author Demchak, J.; Morrow, T.; Skousen, J.; Donovan, J.J.; Rose, A.W.
Title Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites Type (up) Journal Article
Year 2001 Publication Geochemistry – Exploration, Environment, Analysis Abbreviated Journal
Volume 1 Issue 1 Pages 71-80
Keywords acid mine drainage alkalinity anaerobic environment Appalachian Plateau Appalachians carbonate rocks Clearfield County Pennsylvania constructed wetlands Eh equilibrium Filson Wetlands ground water Howe Bridge Wetlands hydrology Jefferson County Pennsylvania limestone McKinley Wetlands Mill Creek watershed Moose Creek movement North America passive methods Pennsylvania pH pollution reclamation sedimentary rocks Sommerville Wetlands systems United States water treatment watersheds wetlands 22 Environmental geology 02B Hydrochemistry
Abstract Acid mine drainage (AMD) is a serious problem in many watersheds where coal is mined. Passive treatments, such as wetlands and anoxic limestone drains (ALDs), have been developed, but these technologies show varying treatment efficiencies. A new passive treatment technique is a vertical flow wetland or successive alkalinity producing system (SAPS). Four SAPS in Pennsylvania were studied to determine changes in water chemistry from inflow to outflow. The Howe Bridge SAPS removed about 130 mg l (super -1) (40%) of the inflow acidity concentration and about 100 mg l (super -1) (60%) iron (Fe). The Filson 1 SAPS removed 68 mg l (super -1) (26%) acidity, 20 mg l (super -1) (83%) Fe and 6 mg l (super -1) (35%) aluminium (Al). The Sommerville SAPS removed 112 mg l (super -1) (31%) acidity, exported Fe, and removed 13 mg l (super -1) (30%) Al. The McKinley SAPS removed 54 mg l (super -1) (91%) acidity and 5 mg l (super -1) (90%) Fe. Acid removal rates at our four sites were 17 (HB), 52 (Filson1), 18 (Sommerville) and 11 (McKinley) g of acid per m (super 2) of surface wetland area per day (g/m (super 2) d (super -1) ). Calcium (Ca) concentrations in the SAPS effluents were increased between 8 and 57 mg l (super -1) at these sites. Equilibrators, which were inserted into compost layers to evaluate redox conditions at our sites, showed that reducing conditions were generally found at 60 cm compost depths and oxidized conditions were found at 30 cm compost depths. Deeply oxidized zones substantiated observations that channel flow was occurring through some parts of the compost. The Howe Bridge site has not declined in treatment efficiency over a six year treatment life. The SAPS construction costs were equal to about seven years of NaOH chemical treatment costs and 30 years of lime treatment costs. So, if the SAPS treatment longevity is seven years or greater and comparable effluent water quality was achieved, the SAPS construction was cost effective compared to NaOH chemical treatment. Construction recommendations for SAPS include a minimum of 50 cm of compost thickness, periodic replacement or addition of fresh compost material, and increasing the number of drainage pipes underlying the limestone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites; 2002-008380; References: 15; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16518 Serial 58
Permanent link to this record
 

 
Author Wilmoth, R.C.; Mason, D.G.; Gupta, M.
Title Treatment of ferrous iron acid mine drainage by reverse osmosis Type (up) Journal Article
Year 1972 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; coal; controls; environmental geology; Environmental Protection Agency; experimental studies; ferrous iron; iron; metals; methods; mining; Mocanaqua; organic residues; Pennsylvania; pollution; reverse osmosis; sedimentary rocks; treatment; United States 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0085-7068 ISBN Medium
Area Expedition Conference
Notes Treatment of ferrous iron acid mine drainage by reverse osmosis; 1976-011825; illus. incl. tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6846 Serial 208
Permanent link to this record