|   | 
Details
   web
Records
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type (up) Journal Article
Year 2001 Publication J. Environ. Qual. Abbreviated Journal
Volume 30 Issue 5 Pages 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D.
Title Utilization of a ceramic membrane for acid mine drainage treatment Type (up) Journal Article
Year 1997 Publication Tailings and Mine Waste '97 Abbreviated Journal
Volume Issue Pages 453-460
Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment
Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 90-5410-857-6 ISBN Medium
Area Expedition Conference
Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8744 Serial 135
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W.
Title Treatment of dissolved metals using permeable reactive barriers Type (up) Journal Article
Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal
Volume Issue 250 Pages 483-490
Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment
Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0144-7815 ISBN Medium
Area Expedition Conference
Notes Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8601 Serial 178
Permanent link to this record
 

 
Author Blowes, D.W.; Bain, J.G.; Smyth, D.J.; Ptacek, C.J.; Jambor, J.L.; Blowes, D.W.; Ritchie, A.I.M.
Title Treatment of mine drainage using permeable reactive materials Type (up) Journal Article
Year 2003 Publication Environmental Aspects of Mine Wastes Abbreviated Journal
Volume 31 Issue Pages 361-376
Keywords acid mine drainage; acidification; aquatic environment; aquifer vulnerability; aquifers; bacteria; biodegradation; Canada; case studies; chemical reactions; Cochrane District Ontario; concentration; damage; degradation; disposal barriers; Eastern Canada; effluents; environmental analysis; ferric iron; Fry Canyon; ground water; iron; Kidd Creek Site; metal ores; metals; mines; models; Monticello Canyon; Ontario; pollution; preferential flow; reactive barriers; remediation; sediments; solid waste; sulfate ion; sulfates; sulfides; tailings; Timmins Ontario; United States; uranium ores; Utah; waste disposal; waste management; waste rock mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0144-7815 ISBN Medium
Area Expedition Conference
Notes Treatment of mine drainage using permeable reactive materials; Ccc:000186842900017; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7910 Serial 182
Permanent link to this record
 

 
Author Ziemkiewicz, P.; Skousen, J.; Simmons, J.
Title Cost benefit analysis of passive treatment systems Type (up) Journal Article
Year 2001 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; Augusta coal field; Big Bear Lake; carbonate rocks; coal mines; cost; dams; drainage basins; economics; ferric iron; Indiana; iron; limestone; metals; mines; optimization; oxidation; Pike County Indiana; pollution; Preston County West Virginia; pyrite; sedimentary rocks; South Fork Patoka River; spoils; sulfate ion; sulfides; surface water; United States; water pollution; water quality; water resources; water treatment; West Virginia 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia Surface Mine Drainage Task Force Symposium Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 22nd West Virginia surface mine drainage task force symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2002-047125; Twenty-second West Virginia surface mine drainage task force symposium, Morgantown, WV, United States, April 3-4, 2001 References: 7; illus. incl. 9 tables; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5766 Serial 191
Permanent link to this record