|   | 
Details
   web
Records
Author Turek, M.; Gonet, M.
Title Nanofiltration in the utilization of coal-mine brines Type (down) Journal Article
Year 1997 Publication Desalination Abbreviated Journal
Volume 108 Issue 1-3 Pages 171-177
Keywords Entsalzung Entsalzungsanlage Umkehrosmose Membran Kohlenbergwerk Natriumchlorid Abwasser Verdampfung Energieverbrauch Nanofiltration mine water treatment
Abstract The utilization of saline coal mine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland. In the case of most concentrated waters, the so-called coalmine brines, the method of concentrating by evaporation in a twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. A considerable restriction in the utilization of coal mine brines is the high energy consumption in these methods of evaporation. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulfate ions in the coal mine brines. The present paper deals with the application of nanofiltration in the pretreatment of the brine. The application of nanofiltration membranes with an adequate pore size, including charged membranes, makes it possible to decrease the concentration of divalent ions in the permeate practically without any changes in the concentration of sodium chloride. Then the permeate may be concentrated in a multi-stage evaporation process, e.g. MSF, without any risk of the crystallization of gypsum. A combination of NF and MSF ought to set down the unit costs of the concentration of coal mine brines below those of mere evaporation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-9164 ISBN Medium
Area Expedition Conference
Notes Feb; Nanofiltration in the utilization of coal-mine brines; Wos:A1997wk45600023; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/8724.pdf; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8724 Serial 29
Permanent link to this record
 

 
Author Arnekleiv, J.V.; Storset, L.
Title Downstream effects of mine drainage on benthos and fish in a Norwegian river; a comparison of the situation before and after river rehabilitation Type (down) Journal Article
Year 1995 Publication Heavy metal aspects of mining pollution and its remediation Abbreviated Journal
Volume 52 Issue Pages 35-43
Keywords Chordata copper Europe experimental studies fluvial environment Gaula River metals Norway Pisces pollutants pollution reclamation Scandinavia trace metals Vertebrata Western Europe zinc 22, Environmental geology
Abstract Parts of the Norwegian river Gaula are strongly polluted from former mining activity in the area. In the most polluted parts of the river the concentration levels of Cu and Zn in 1986-1987 were up to 155 mu g l (super -1) and 186 mu g l (super -1) , respectively. In 1989 the spoil heaps in the mining area were covered with protective layers of moss-covered plastic. In 1991-1992 the concentration levels of Cu and Zn had decreased by 75% and 65%, respectively. Animal life in the polluted area seemed to be strongly affected by the trace metals in 1986-1987. The 1991-1992 results showed a marked increase in the number of species and in the number of individuals of each species of Ephemeroptera and Plecoptera, compared with the results from 1986-87. Good correlations were found between the concentrations of Cu in the water and both the number of species and the number of individuals of Ephemeroptera and Plecoptera. Analysis of the species Baetis rhodani, Diura nanseni and Rhyacophila nubila showed an average total dry weight content of Cu up to 264 mu g g (super -1) , of Zn up to 1930 mu g g (super -1) and of Cd up to 16 mu g g (super -1) . The contents of the three trace metals were significantly different from one species to another and in part between the stations for each species. In 1987 trout died after an exposure of one to two days on three test sites in the river, whereas in 1991-1992 40-75% of the trout survived an exposure period of several weeks at two of the sites. Electrofishing in 1991-1992 indicated recolonization of trout in the lower parts of the former affected and uninhabitable area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Downstream effects of mine drainage on benthos and fish in a Norwegian river; a comparison of the situation before and after river rehabilitation; 1995-033037; 9th international conference on Heavy metals in the environment, Toronto, ON, Canada, Sept. 12-17, 1993 Special Issue References: 23; illus. incl. 2 tables; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16683 Serial 30
Permanent link to this record
 

 
Author Wolkersdorfer, C.
Title Mine water tracer tests as a basis for remediation strategies Type (down) Journal Article
Year 2005 Publication Chemie der Erde Abbreviated Journal
Volume 65 Issue Suppl. 1 Pages 65-74
Keywords Mine water treatment Stratification Convection First flush Tracer tests Microspheres Reactive transport Groundwater problems and environmental effects Pollution and waste management non radioactive acid mine drainage remediation
Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Therefore, the knowledge about the hydraulic behaviour of the mine water within the flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, but only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself. Applying the results of the test provides possibilities f or optimizing the outcome of the source-path-target methodology and therefore diminishes the costs of remediation strategies. Consequently, prior to planning of remediation strategies or numerical simulations, relatively cheap and reliable results for decision making can be obtained via a well conducted tracer test. < copyright > 2005 Elsevier GmbH. All rights reserved.
Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, 09596 Freiberg, Sachsen, Germany c.wolke@tu-freiberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2819 ISBN Medium
Area Expedition Conference
Notes Sep 19; Mine water tracer tests as a basis for remediation strategies; 2767887; Germany 34; Geobase Approved no
Call Number CBU @ c.wolke @ 17499 Serial 34
Permanent link to this record
 

 
Author Rodiek, J.; Verma, T.R.; Thames, J.L.
Title Disturbed land rehabilitation in Lynx Creek watershed Type (down) Journal Article
Year 1975 Publication Landscape and Planning Abbreviated Journal
Volume 2 Issue Pages 265-282
Keywords
Abstract Rodiek, J., Verma, T.R. and Thames, J.L., 1976. Disturbed land rehabilitation in Lynx Creek Watershed. Landscape Plann., 2: 265-282. The Lynx Creek Watershed is located on the Prescott National Forest about 8 km south of Prescott, Arizona. The watershed, with an area of 7304 ha, has experienced intensive copper and gold mining activities in the past. Approximately 13% of the area still consists of patented mining claims (mainly copper). There are numerous abandoned mine shafts, waste dumps and mine tailings in the area. Past mining activities in the watershed have caused significant deterioration in water quality within and downstream from the mining sites. Mine drainage includes water flowing from mine shafts, surface runoff and seepage from mining dumps. Drainage from the numerous old mining sites contributes to the toxic mineral and sediment pollution of the water resources in the area. The pollutants in the form of dissolved, suspended or other solid mineral wastes and debris, enter in the streams of ground water. Aquatic life and recreation potential of the watershed is greatly reduced by the water pollution problem from the abandoned mines. The pollutants from the abandoned mines enter into Lynx Lake which is located 10 km southeast of Prescott. Lynx Lake, a trout fisheries lake, was created by a dam built in 1963 by the Arizona Game and Fish Department. The lake is 22 surface hectares in size with the storage capacity of 1.85 x 106 m3. The average yearly flow of sediment into the lake is 2900 m3. The sediment is slightly acidic and has a high concentration of copper, manganese, iron, zinc, and sulfates. The Sheldon dump and tailings pond are considered two major sources of pollution. Increasing need to direct additional attention toward mineral related problems made it necessary to coordinate U.S. Forest Service efforts with others involved in mining and reclamation. The Forest Service started SEAM (Surface Environment And Mining) in 1972 to coordinate interagency reclamation efforts. The Sheldon Mine dump and tailings pond were undertaken as a reclamation project through the coordinated efforts of the Forest Service, and the School of Renewable Natural Resources, University of Arizona at Tucson. The project is aimed at reclaiming some of the abandoned spoils in the Lynx Creek watershed and monitoring of water quality in the creek to evaluate the effectiveness of reclamation procedures. The reclamation approach includes recontouring, revegetating, drainage control and visual impact modification activities. The results to date have been encouraging. There was an excellent vegetation cover established within 5 weeks of seeding. Runoff and sediment control on the regraded slopes seemed quite effective. The methodology and technological experience gained from the reclamation project will provide invaluable information for reclaiming any abandoned mining sites within the Ponderosa Pine Ecosystem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Disturbed land rehabilitation in Lynx Creek watershed; Science Direct Approved no
Call Number CBU @ c.wolke @ 17284 Serial 35
Permanent link to this record
 

 
Author Akcil, A.; Koldas, S.
Title Acid Mine Drainage (AMD): causes, treatment and case studies Type (down) Journal Article
Year 2006 Publication J. Cleaner Prod. Abbreviated Journal
Volume 14 Issue 12-13 Pages 1139-1145
Keywords contamination effluents government industrial pollution industrial waste mining industry research initiatives wastewater treatment acid mine drainage environmental problems mining industry government research initiatives contamination civil engineering mining quarrying activity environmental impact acid generating process acid drainage migration prevention measures effluent treatment chemical treatment biological treatment Manufacturing and Production Entwässern=Gelände Umweltbelastung Bauingenieurwesen Bergbau Sickerwasser Steinbruch Säureproduktion Neutralisation Bergbauindustrie technische Forschung Ingenieurswissenschaft Steinbruchabbau Acid Mine Drainage Mining Environmental Chemical and biological treatment
Abstract This paper describes Acid Mine Drainage (AMD) generation and its associated technical issues. As AMD is recognized as one of the more serious environmental problems in the mining industry, its causes, prediction and treatment have become the focus of a number of research initiatives commissioned by governments, the mining industry, universities and research establishments, with additional inputs from the general public and environmental groups. In industry, contamination from AMD is associated with construction, civil engineering mining and quarrying activities. Its environmental impact, however, can be minimized at three basic levels: through primary prevention of the acid-generating process; secondary control, which involves deployment of acid drainage migration prevention measures; and tertiary control, or the collection and treatment of effluent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage (AMD): causes, treatment and case studies; Science Direct Approved no
Call Number CBU @ c.wolke @ 17462 Serial 36
Permanent link to this record