|   | 
Details
   web
Records
Author Parker, G.; Noller, B.; Waite, T.D.
Title Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia Type (down) Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Australasia Australia buffers carbonate ion geochemistry Northern Territory Australia Pine Creek Geosyncline pollution pyrite sulfides surface water tropical environment water quality 22, Environmental geology
Abstract Surface waters in the Pine Creek Geosyncline (located in Australia's “Top End”, defined as the area of Australia north of 15 degrees S) are characterized by their low carbonate buffering capacity. These waters are buffered by silicate weathering and hence are slightly acidic, ranging in pH from 4.0 to 6.0. The Pine Creek Geosyncline contains most of the Top Ends' economic mineral deposits and characteristically shows no correlation between carbonate minerals and sulfidic orebodies hosting gold deposits (unlike uranium deposits). Thus many gold mines do not have ready access to carbonate minerals for buffering acid mine drainage (AMD). It is possible that locally available fast-weathering silicate minerals may be used to buffer AMD seeps. The buffering intensity of silicate minerals exceeds that of carbonate minerals, but their slow dissolution kinetics has ensured that these materials have received little attention in treating AMD. In addition, carbonate mineral dissolution is retarded when contacted with intense AMD solutions due to the formation of surface coatings of iron minerals. The lower pH range of silicate mineral dissolution may prevent the formation of such coatings. The Pine Creek Geosyncline consists of a complex geochemistry, and a number of fast-weathering silicate minerals have been noted in various areas. The difficulty in assessing such minerals for use in buffering AMD is the lack of kinetic data available under conditions prevalent AMD (i.e., low pH solutions saturated with aluminium and silica). This study sets out to evaluate the applicability of using such minerals to treat AMD surface seeps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia; GeoRef; English; 2000-048644; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 36; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16594 Serial 273
Permanent link to this record
 

 
Author Miller, S.D.
Title Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands Type (down) Book Chapter
Year 1999 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; controls; decontamination; environmental analysis; environmental effects; geochemistry; ground water; land management; lime; oxidation; pH; pollutants; pollution; preventive measures; risk assessment; soils; sulfides; surface water; waste disposal; waste management 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Lewis Publishers Place of Publication Boca Raton Editor Wong, M.H.; Wong, J.W.C.; Baker, A.J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 157504109x Medium
Area Expedition Conference
Notes Overview of acid mine drainage issues and control strategies Remediation and management of degraded lands; GeoRef; English; 2000-057936 Approved no
Call Number CBU @ c.wolke @ 5951 Serial 298
Permanent link to this record
 

 
Author Hubbard, K.L.; Darling, G.D.; Rao, S.R.; Finch, J.A.
Title New functional polymers as sorbents for the selective recovery of toxic heavy metals from acid mine drainage Type (down) Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal
Volume Issue Pages 273-280
Keywords absorption; acid mine drainage; chelation; experimental studies; geochemistry; heavy metals; ion exchange; iron; metals; pollution; remediation; toxic materials; zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes New functional polymers as sorbents for the selective recovery of toxic heavy metals from acid mine drainage; GeoRef; English; 2007-045229; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 8; illus. incl. 7 tables Approved no
Call Number CBU @ c.wolke @ 6611 Serial 346
Permanent link to this record
 

 
Author Hellier, W.W.; Giovannitti, E.F.; Slack, P.T.
Title Best professional judgement analysis for constructed wetlands as a best available technology for the treatment of post-mining groundwater seeps Type (down) Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal
Volume Issue Pages 60-69
Keywords acid mine drainage; coal mines; geochemistry; ground water; iron; manganese; metals; mines; mining; mining geology; open-pit mining; pH; pollution; reclamation; remediation; seepage; surface mining; tailings; waste disposal; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Best professional judgement analysis for constructed wetlands as a best available technology for the treatment of post-mining groundwater seeps; GeoRef; English; 2007-045158; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 9; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 6568 Serial 353
Permanent link to this record
 

 
Author Guo, F.; Yu, H.
Title Hydrogeochemistry and treatment of acid mine drainage in southern China Type (down) Book Chapter
Year 1993 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 Abbreviated Journal
Volume Issue Pages 277-283
Keywords acid mine drainage Asia bacteria chemical reactions China coal mines ecology Far East geochemistry hydrochemistry Jiangxi China lime mines oxidation pH pollution sulfides surface water trace elements water quality 22 Environmental geology 02B Hydrochemistry
Abstract Coal mines and various sulfide ore deposits are widely distributed in Southern China. Acid mine drainage associated with coal and metal sulfide deposits affects water quality in some mined areas of Southern China. Mining operations accelerate this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Some approaches to reduce the effects of acid mine drainage on water quality are adopted, and they can be divided into two aspects: (a) Man-made control technology based on long-term monitoring of acid mine drainage; and, (b) Neutralization of acidity through the addition of lime. It is important that metals in the waste water are removed in the process of neutralization. A new method for calculating neutralization dosage is applied. It is demonstrated that the calculated value is approximately equal to the actual required value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Zamora, B.A.; Connolly, R.E.
Language Summary Language Original Title
Series Editor Series Title The challenge of integrating diverse perspectives in reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Hydrogeochemistry and treatment of acid mine drainage in southern China; GeoRef; English; 2002-028935; 10th annual national meeting of the American Society for Surface Mining and Reclamation, Spokane, WA, United States, May 16, 1993 References: 3; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 16744 Serial 366
Permanent link to this record