|   | 
Details
   web
Records
Author Kepler, D.A.; Mc Cleary, E.C.
Title Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage Type (up) Journal Article
Year 1994 Publication Proceedings, International Land Reclamation and Mine Drainage Conference Abbreviated Journal
Volume 1 Issue Pages 195-204
Keywords acid mine drainage; alkalinity; anaerobic environment; calcium carbonate; chemical reactions; experimental studies; pH; pollutants; pollution; remediation; water quality SAPS mine water RAPS
Abstract Constructed wetland treatment system effectiveness has been limited by the alkalinity-producing, or acidity-neutralizing, capabilities of systems. Anoxic limestone drains (ALD's) have allowed for the treatment of approximately 300 mg/L net acidic mine drainage, but current design guidance precludes using successive ALD's to generate alkalinity in excess of 300 mg/L because of concerns with dissolved oxygen. “Compost” wetlands designed to promote bacterially mediated sulfate reduction are suggested as a means of generating alkalinity required in excess of that produced by ALD's. Compost wetlands create two basic needs of sulfate reducing bacteria; anoxic conditions resulting from the inherent oxygen demand of the organic substrate, and quasi-circumneutral pH values resulting from the dissolution of the carbonate fraction of the compost. However, sulfate reduction treatment area needs are generally in excess of area availability and/or cost effectiveness. Second generation alkalinity-producing systems demonstrate that a combination of existing treatment mechanisms has the potential to overcome current design concerns and effectively treat acidic waters ad infinitum. Successive alkalinity-producing systems (SAPS) combine ALD technology with sulfate reduction mechanisms. SAPS promote vertical flow through rich organic wetland substrates into limestone beds beneath the organic compost, discharging the pore waters. SAPS allow for conservative wetland treatment sizing calculations to be made as a rate function based on pH and alkalinity values and associated contaminant loadings. SAPS potentially decrease treatment area requirements and have the further potential to generate alkalinity in excess of acidity regardless od acidity concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage; Cn, Kj, Aj; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9722.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9722 Serial 55
Permanent link to this record
 

 
Author Bechard, G.
Title Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage Type (up) Journal Article
Year 1994 Publication Journal of Environmental Quality Abbreviated Journal
Volume 23 Issue 1 Pages 111-116
Keywords mine water treatment
Abstract A mixed aerobic-anaerobic microbial treatment process was developed previously for acid mine drainage (AMD) using straw as a substrate. The process was effective only if AMD was supplemented with sucrose. The present study was conducted to determine which, if any, of three cellulosic materials could sustain the microbial treatment of AMD without the addition of a sucrose amendment and to determine the effect of the retention time on the performance of the reactors. The performance of small reactors that treated simulated AMD in the continuous mode was evaluated using alfalfa (Medicago sativa L.) hay, timothy (Phleum pratense L.) hay, and straw with a 5 d retention time. Parameters measured were pH, Fe, Al, sulfate, and ammonium. Timothy hay and straw sustained AMD mitigation for 3 wk, and thereafter all activity ceased. After the reactors ceased treating AMD, the mitigative activities were reinitiated by the addition of sucrose, but not by urea. Alfalfa sustained AMD mitigation for a longer time period than either straw or timothy. The effect of three retention times, 3.5, 7, and 35 d, was then investigated for reactors containing fresh alfalfa. Increasing the retention time resulted in better metal removal and a greater pH increase. With a 7-d retention time, 75 L of simulated AMD were neutralized from a pH of 3.5 to a pH value greater than 6.5. Reactors operating with a 3.5-d retention time treated only 58.3 L of simulated AMD before failing. Ammonium was detected in effluents of active reactors. The results of this study indicate that a low maintenance microbial treatment system can be developed with alfalfa as a substrate without the addition of a sucrose amendment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage; Wos:A1994mu33000017; Times Cited: 22; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17194 Serial 89
Permanent link to this record
 

 
Author Bhole, A.G.
Title Acid-Mine Drainage And Its Treatment Type (up) Journal Article
Year 1994 Publication Impact of Mining on the Environment Abbreviated Journal
Volume Issue Pages 131-141
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Acid-Mine Drainage And Its Treatment; Isip:A1994ba02k00015; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8945 Serial 146
Permanent link to this record
 

 
Author Stefanoff, J.G.; Kim, Y.K.
Title Reduction of leachability of heavy metals in acid mine drainage Type (up) Journal Article
Year 1994 Publication J. Environ. Sci. Health Part A Environ. Sci. Eng. Abbreviated Journal
Volume 29 Issue 2 Pages 371-388
Keywords 1 Geography
Abstract The leaching characteristics of sludges from the treatment of acid mine drainage(AMD) from Iron Mountain Mine near Redding, California were compared using two different processes: caustic soda treatment and a modified lime/sulfide treatment process. The modified lime/sulfide process produced a sludge with better dewaterability characteristics than sludge from the caustic soda process. The results of the Cal WET indicated that the modified lime/sulfide process sludge had less leachability than that of sludge from the caustic soda process. Both processes could achieve a substantial reduction of heavy metals in leachate to levels below the federal regulatory limits(TCLP). For cadmium and zinc, however, neither process produced a sludge that met the requirements of the Cal WET procedure.
Address CH2M HILL, 2525 Airpark Drive, Redding, CA 96001
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reduction of leachability of heavy metals in acid mine drainage; (1009849); 93x-00709; Using Smart Source Parsing; Geobase Approved no
Call Number CBU @ c.wolke @ 17564 Serial 231
Permanent link to this record
 

 
Author Stark, L.R.; Williams, F.M.
Title The roles of spent mushroom substrate for the mitigation of coal mine drainage Type (up) Journal Article
Year 1994 Publication Compost Science and Utilization Abbreviated Journal
Volume 2 Issue 4 Pages 84-94
Keywords acid mine drainage rehabilitation coal mining spent mushroom substrate 3 Geology
Abstract Spent mushroom substrate (SMS) has been used widely in coal mining regions of the USA as the primary substrate in constructed wetlands for the treatment of coal mine drainage. In laboratory and mesocosm studies, SMS has emerged as one of the substrates for mine water treatment. Provided the pH of the mine water does not fall below 3.0, SMS can be used in the mitigation plan. However, neither Mn nor dissolved ferric Fe appears to be treatable using reducing SMS wetlands. Since after a few years much of the nonrefractive organic carbon in SMS wil have been decomposed and metabolized, carbon supplementation can significantly extend the life of the SMS treatment wetland and improve water treatment. -from Authors
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The roles of spent mushroom substrate for the mitigation of coal mine drainage; (1099507); 95k-07480; Using Smart Source Parsing pp; Geobase Approved no
Call Number CBU @ c.wolke @ 17639 Serial 233
Permanent link to this record