|   | 
Details
   web
Records
Author Demchak, J.; Morrow, T.; Skousen, J.; Donovan, J.J.; Rose, A.W.
Title Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites Type (up) Journal Article
Year 2001 Publication Geochemistry – Exploration, Environment, Analysis Abbreviated Journal
Volume 1 Issue 1 Pages 71-80
Keywords acid mine drainage alkalinity anaerobic environment Appalachian Plateau Appalachians carbonate rocks Clearfield County Pennsylvania constructed wetlands Eh equilibrium Filson Wetlands ground water Howe Bridge Wetlands hydrology Jefferson County Pennsylvania limestone McKinley Wetlands Mill Creek watershed Moose Creek movement North America passive methods Pennsylvania pH pollution reclamation sedimentary rocks Sommerville Wetlands systems United States water treatment watersheds wetlands 22 Environmental geology 02B Hydrochemistry
Abstract Acid mine drainage (AMD) is a serious problem in many watersheds where coal is mined. Passive treatments, such as wetlands and anoxic limestone drains (ALDs), have been developed, but these technologies show varying treatment efficiencies. A new passive treatment technique is a vertical flow wetland or successive alkalinity producing system (SAPS). Four SAPS in Pennsylvania were studied to determine changes in water chemistry from inflow to outflow. The Howe Bridge SAPS removed about 130 mg l (super -1) (40%) of the inflow acidity concentration and about 100 mg l (super -1) (60%) iron (Fe). The Filson 1 SAPS removed 68 mg l (super -1) (26%) acidity, 20 mg l (super -1) (83%) Fe and 6 mg l (super -1) (35%) aluminium (Al). The Sommerville SAPS removed 112 mg l (super -1) (31%) acidity, exported Fe, and removed 13 mg l (super -1) (30%) Al. The McKinley SAPS removed 54 mg l (super -1) (91%) acidity and 5 mg l (super -1) (90%) Fe. Acid removal rates at our four sites were 17 (HB), 52 (Filson1), 18 (Sommerville) and 11 (McKinley) g of acid per m (super 2) of surface wetland area per day (g/m (super 2) d (super -1) ). Calcium (Ca) concentrations in the SAPS effluents were increased between 8 and 57 mg l (super -1) at these sites. Equilibrators, which were inserted into compost layers to evaluate redox conditions at our sites, showed that reducing conditions were generally found at 60 cm compost depths and oxidized conditions were found at 30 cm compost depths. Deeply oxidized zones substantiated observations that channel flow was occurring through some parts of the compost. The Howe Bridge site has not declined in treatment efficiency over a six year treatment life. The SAPS construction costs were equal to about seven years of NaOH chemical treatment costs and 30 years of lime treatment costs. So, if the SAPS treatment longevity is seven years or greater and comparable effluent water quality was achieved, the SAPS construction was cost effective compared to NaOH chemical treatment. Construction recommendations for SAPS include a minimum of 50 cm of compost thickness, periodic replacement or addition of fresh compost material, and increasing the number of drainage pipes underlying the limestone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites; 2002-008380; References: 15; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16518 Serial 58
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type (up) Journal Article
Year 1998 Publication Environ Geosci Abbreviated Journal
Volume 5 Issue 2 Pages 43-56
Keywords acid mine drainage aerobic environment anaerobic environment attenuation chemical fractionation chemical properties concentration constructed wetlands controls degradation detection environmental analysis ferric iron goethite heavy metals iron jarosite Kentucky McCreary County Kentucky metals oxides pollutants pollution seepage soils solubility sulfates surface water United States water treatment wetlands X-ray diffraction data 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1075-9565 ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; 2001-034195; References: 41; illus. incl. 1 table United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16623 Serial 61
Permanent link to this record
 

 
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type (up) Journal Article
Year 2001 Publication J. Environ. Qual. Abbreviated Journal
Volume 30 Issue 5 Pages 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author Skousen, J.
Title Overview of passive systems for treating acid mine drainage Type (up) Journal Article
Year 1997 Publication Green Lands Abbreviated Journal
Volume 27 Issue 4 Pages 34-43
Keywords acid mine drainage; anoxic limestone drains; bioremediation; constructed wetlands; diversion wells; limestone ponds; mitigation; open limestone channels; passive systems; pollution; remediation; successive alkalinity producing systems; technology; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0271-0110 ISBN Medium
Area Expedition Conference
Notes Overview of passive systems for treating acid mine drainage; 2000-019214; References: 59; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6309 Serial 247
Permanent link to this record
 

 
Author Demin, O.A.; Dudeney, A.W.L.; Tarasova, I.I.
Title Remediation of Ammonia-rich Minewater in Constructed Wetlands Type (up) Journal Article
Year 2002 Publication Environ. Technol. Abbreviated Journal
Volume 23 Issue 5 Pages 497-514
Keywords constructed wetlands reed beds ammonia removal nitrification woolley colliery horizontal subsurface flow nitrate removal waste-water denitrification nitrification
Abstract A three-year study of ammonia removal from minewater was carried out employing constructed wetland systems (surface flow wetland and subsurface flow wetland cells) at the former Woolley Mine in West Yorkshire, UK The 1.4 Ha surface flow wetland (constructed in 1995) reduced the ammonia concentration from 3.5 – 4.5 mg l(-1) to < 2 3 mg V during the first half of the study and to essentially zero in the last year (2000 – 2001). About 25 % of contained ammonia was converted to nitrate, about 10 % was consumed by the plants and up to 30 % was converted to nitrogen gas. This maturation effect was attributed to increased depth of sludge from sedimentation of ochre, providing increased surface area for immobilisation of ammonia oxidising bacteria. The surface flow wetland finally removed 23 g m(-2) day(-1) ammonia in comparison with 3.8 g m(-2) day' for the subsurface flow (pea gravel) wetland cells, constructed for the present work and dosed with ammonium salts. Removal of ammonia by both systems was consistent with well-established mechanisms of nitrification and denitrification. It was also consistent with ammonia removal in wastewater wetland systems, although the greater aeration in the minewater systems obviated the need for special aeration cycles. The general role of wetland plants in such aerated conditions was attributed to maintaining hydraulic conditions (such as hydraulic efficiency and hydraulic resistance of substratum in subsurface flow systems) in the wetlands and providing a suspended solids filter for minewater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3330 ISBN Medium
Area Expedition Conference
Notes Remediation of Ammonia-rich Minewater in Constructed Wetlands; Isi:000176238900002; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17328 Serial 405
Permanent link to this record