toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Skousen, J.; Jenkins, M. openurl 
  Title Acid mine drainage treatment costs with calcium oxide and the Aquafix machine Type (up) Journal Article
  Year 2001 Publication Green Lands Abbreviated Journal  
  Volume 31 Issue 3 Pages 46-51  
  Keywords acid mine drainage; chemical composition; Clay County West Virginia; coal mines; cost; decontamination; ground water; instruments; lime; Mary Ruth Mines; mines; pollution; Preston County West Virginia; remediation; sludge; surface water; techniques; United States; water pollution; water treatment; West Virginia 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0271-0110 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage treatment costs with calcium oxide and the Aquafix machine; 2002-045348; illus. United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5759 Serial 246  
Permanent link to this record
 

 
Author Okuda, T.; Ema, S.; Ishizaki, C.; Fujimoto, J. openurl 
  Title Mine drainage treatment and ferrite sludge application Type (up) Journal Article
  Year 1991 Publication NEC Technical Journal Abbreviated Journal  
  Volume 44 Issue 5 Pages 4-16  
  Keywords ferrite applications mining water treatment mine drainage treatment waste water treatment ions metal recovery catalysts environmental problems solution ferrite sludge application iron oxidation bacteria ferrite formation process mine drainage Matsuo Mine magnetic marking materials magnetic fluid metal separation semiactive magnetic damper batteries fish gathering cement tracer Electrical and Electronic Engineering Manufacturing and Production  
  Abstract The `ferrite process' is an excellent method for treating waste water containing iron and arsenic, but cannot be directly applied to mine drainage where silicon and aluminum ions are present, because they strongly inhibit ferrite formation. As a result of the development of related technologies such as the elimination of silicon, the concentration of iron, and the oxidation of ferrous ions using iron-oxidation bacteria, a new ferrite formation process has been developed and applied to the mine drainage of the Matsuo Mine. The paper discusses the application of the ferrite sludge to magnetic marking materials, magnetic fluid for metal separation and recovery, and the semiactive magnetic damper is described. The related technologies which will be expected to play an important role in solving the environmental problems are also described. These technologies will change the ferrite sludge to beneficial materials, which can be used for carbon dioxide decomposing catalysts, reuse of dry batteries, fish gathering blocks, and cement tracer for ground improvement  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0285-4139 ISBN Medium  
  Area Expedition Conference  
  Notes Mine drainage treatment and ferrite sludge application; 3991072; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16787 Serial 279  
Permanent link to this record
 

 
Author Noss, R.R.; Crago, R.W.; Gable, J.; Kerber, B.; Mafi, S. openurl 
  Title Use of flue gas desulfurization sludge in abandoned mine land reclamation Type (up) Journal Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords abandoned mines; acid mine drainage; flue gas desulfurization sludge; land management; land use; liquid waste; mines; mining; mining geology; moisture; pH; pollution; reclamation; remediation; soils; strip mining; surface mining; waste disposal 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher The Ohio Journal of Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Ohio Academy of Science 106th annual meeting; progress toward water quality in the Lake Erie basin; abstracts Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 1999-043696; Ohio Academy of Science 106th annual meeting, Bowling Green, OH, United States, April 4-6, 1997; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6302 Serial 282  
Permanent link to this record
 

 
Author Kuyucak, N. openurl 
  Title Acid mine drainage; treatment options for mining effluents Type (up) Journal Article
  Year 2001 Publication Mining Environmental Management Abbreviated Journal  
  Volume 9 Issue 2 Pages 12-15  
  Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5723 Serial 324  
Permanent link to this record
 

 
Author Aube, B.C.; Zinck, J.M. openurl 
  Title Comparison of AMD treatment processes and their impact on sludge characteristics Type (up) Journal Article
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage cost decontamination density discharge geochemistry hydrochemistry leaching lime metals mine dewatering neutralization pH pollution remediation sludge stability tailings toxicity viscosity waste disposal water treatment 22, Environmental geology  
  Abstract Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sudbury Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Mining and the Environment II Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2002-060865; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 10; illus. incl. 6 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16574 Serial 473  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: