|   | 
Details
   web
Records
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type (up) Book Chapter
Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal
Volume Issue Pages 1545
Keywords acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology
Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.
Address
Corporate Author Thesis
Publisher AAPG Bulletin Place of Publication 81 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no
Call Number CBU @ c.wolke @ 16630 Serial 70
Permanent link to this record
 

 
Author Bloom, N.S.; Preus, E.; Kilner, P.I.; von der Geest, E.; Hensman, C.E.
Title Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry Type (up) Book Chapter
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; Berkeley Pit; Butte Montana; decontamination; geochemistry; hydrochemistry; industrial waste; metals; mineral composition; Montana; pollution; Silver Bow County Montana; soils; sulfates; surface water; toxic materials; trace metals; United States; waste disposal; water treatment 22 Environmental geology; 02A General geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046176; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5625 Serial 445
Permanent link to this record
 

 
Author Bolzicco, J.; Carrera, J.; Ayora, C.
Title Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage Type (up) Journal Article
Year 2004 Publication Revista Latino-Americana de Hidrogeologia Abbreviated Journal
Volume 4 Issue Pages 27-34
Keywords abandoned mines acid mine drainage Agrio River Andalusia Spain aquifers Aznalcollar Mine Cenozoic chemical composition chemical ratios copper ores dams disposal barriers drainage basins Europe geochemistry ground water Guadiamar River hydrochemistry Iberian Peninsula Iberian pyrite belt igneous rocks metal ores mineral composition mines mining Miocene Neogene permeability pH pollution reactive barriers remediation sedimentary rocks sediments Seville Spain Southern Europe Spain surface water tailings Tertiary volcanic rocks waste disposal water treatment zinc ores 22, Environmental geology
Abstract As a result of the collapse of a mine tailing dam in april 1998 about 40 km of the Agrio and Guadiamar valleys were covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil of the Agrio valley and the aquifer remains polluted with acid water (ph<4) and metals (10 mg/L Zn, 5 mg/L Cu and Al). A permeable reactive barrier was build across the aquifer to increase the alcalinity and retain the metals. The barrier is made up of three sections of 30 m longX1.4 m thickX5 m deep (average) containing different proportions of limestone gravel, organic compost and zero-valent iron. The residence time of the water in the barrier is about two days. Within the barrier, the pH values increase to near neutral mainly due to calcite dissolution. Metals co-precipitate as oxyhydroxides, and they are also adsorbed on the organic matter surface. Down-stream the barrier, the total pollution removal is around 60-90% for Zn and Cu, and from 50 to 90% for Al and acidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage; 2004-072864; References: 7; illus. incl. geol. sketch map Brazil (BRA); GeoRef; Spanish Approved no
Call Number CBU @ c.wolke @ 16471 Serial 443
Permanent link to this record