|   | 
Details
   web
Records
Author Edraki, M.
Title (down) Post closure management of the Mt Leyshon Gold Mine – Water the integrator Type Journal Article
Year 2006 Publication Water in Mining 2006, Proceedings Abbreviated Journal
Volume Issue Pages 233-242
Keywords mine water treatment
Abstract Mining at the Mt Leyshon Gold Mine in semi-arid north Queensland stopped in 2002. Newmont Australia has recently initiated a thorough post-closure water management study of the site by revisiting the existing information and conducting new water-related investigations. The focus of this paper. which is the first publication on post-closure environmental management of the site. is an overview of the site water quality in view of the sources and spatial distribution of polluted mine water, and also the performance of cover systems in controlling water flux though mine wastes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Post closure management of the Mt Leyshon Gold Mine – Water the integrator; Isip:000243724400032; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16925 Serial 150
Permanent link to this record
 

 
Author Märten, H.
Title (down) Neueste Trends zur aktiven Wasserbehandlung und Anwendungsbeispiele Type Journal Article
Year 2006 Publication Wissenschaftliche Mitteilungen Abbreviated Journal
Volume 31 Issue Pages 13-22
Keywords Wasserbehandlung AMD Acidic Mine Drainage In-situ-Laugung ISL Tagebaurestsee
Abstract Aktuelle Entwicklungen auf dem Gebiet der aktiven Wasserbehandlung im Bergbau in den spezifischen Anwendungsgebieten • Behandlung von sauren Bergbauwässern (AMD – acidic mine drainage) mit Schwerpunkt HDS-Technologie (HDS – high-density sludge) • In-situ-Behandlung bergbaubeeinflusster Grundwasserkörper, insbesondere nach Anwendung der In-situ-Laugung (ISL) • In-situ-Behandlung von Tagebaurestseen mit Schwerpunkt In-lake-Verfahren werden hinsichtlich Machbarkeit, technologischer Kenngrößen und Effizienz bewertet und kommen-tiert. Recent developments in the field of active water treatment technologies in the mining sector are re-viewed. Application areas of interest include • Treatment of acidic mine drainage (AMD) emphasizing HDS technology (HDS – high-density sludge) • In-situ treatment of groundwater affected by mining, in particular after the application of in-situ leaching (ISL) • In-situ treatment of lakes arising in former open-pit lignite mines, in particular the application of in-lake methods The various applications are evaluated with regard to feasibility, technical characteristics and treat-ment efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-1284 ISBN Medium
Area Expedition Conference
Notes Neueste Trends zur aktiven Wasserbehandlung und Anwendungsbeispiele; 1; FG 'aha' 5 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17386 Serial 308
Permanent link to this record
 

 
Author Jong, T.
Title (down) Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor Type Journal Article
Year 2006 Publication Water Research Abbreviated Journal
Volume 40 Issue 13 Pages 2561-2571
Keywords mine water treatment
Abstract The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters. (c) 2006 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor; Wos:000239469400012; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16929 Serial 108
Permanent link to this record
 

 
Author Bamforth, S.M.
Title (down) Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates Type Journal Article
Year 2006 Publication Appl. Geochem. Abbreviated Journal
Volume 21 Issue 8 Pages 1274-1287
Keywords mine water treatment
Abstract Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate may not be necessary for successful Mn precipitation. (c) 2006 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates; Wos:000240297600004; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16916 Serial 107
Permanent link to this record
 

 
Author Sibrell, P.L.
Title (down) Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA Type Journal Article
Year 2006 Publication Aquacultural Engineering Abbreviated Journal
Volume 34 Issue 2 Pages 61-71
Keywords mine water treatment
Abstract Decades of atmospheric acid deposition have resulted in widespread lake and river acidification in the northeastern U.S. Biological effects of acidification include increased mortality of sensitive aquatic species Such as the endangered Atlantic salmon (Salmo salar). The purpose of this paper is to describe the development of a limestone-based fluidized bed system for the treatment of acid-impacted waters. The treatment system was tested at the Craig Brook National Fish Hatchery in East Orland, Maine over a period of 3 years. The product water from the treatment system was diluted with hatchery water to prepare water supplies with three different levels of alkalinity for testing of fish health and Survival. Based on positive results from a prototype system used in the first year of the study, a larger demonstration system was used in the second and third years with the objective of decreasing operating costs. Carbon dioxide was used to accelerate limestone dissolution, and was the major factor in system performance, as evidenced by the model result: Alk = 72.84 X P(CO2)(1/2); R-2 = 0.975. No significant acidic incursions were noted for the control water over the course of the Study. Had these incursions occurred, survivability in the untreated water would likely have been much more severely impacted. Treated water consistently provided elevated alkalinity and pH above that of the hatchery source water. (C) 2005 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA; Wos:000235568800001; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16942 Serial 113
Permanent link to this record